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tionwide starting in 2014. In the Taiwan mechanism, points are deducted from an

applicant’s score with larger penalties for lower ranked choices. Deduction makes the

mechanism a hybrid between the Boston and deferred acceptance mechanisms. Our
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1 Introduction

In June 2014, more than five hundred parents marched in Taipei, protesting Taiwan’s new

mechanism for high school placement. Protestors held placards stating, “fill out the prefer-

ence form for us,” and decried admissions as “gambling” (I-chia 2014). Due to this pressure

and calls for his resignation, education minister Chiang Wei-Ling subsequently issued a for-

mal public apology for the new high school assignment system (CNA 2014b).

What are the protestors complaining about, and why is there so much turmoil associ-

ated with Taiwan’s new system? To provide insights into this question, this paper analyzes

properties of Taiwan’s assignment mechanism, a new assignment mechanism (to our knowl-

edge) that represents a hybrid between the widely-studied deferred acceptance and Boston

or immediate acceptance mechanisms.

Taiwan, like many other countries and regions, has recently launched a series of reforms

to standardize and centralize its secondary school system. At the turn of the century, rising

Taiwanese high schoolers took an admissions exam consisting of five subjects. Students

submitted their ranking over schools, and those with a higher score choose first. For the

next decade, an essay component was added to the admissions exam. Local districts were

free to use other performance measures aside from exams (such as Chinese and English,

music or sports) and to chose how to convert these measures to a total score.

In 2014, Taiwan passed the Senior-High School Education Act, which established a Com-

prehensive Assessment Program for Junior High School students. This act changed how

each of the five subjects on the admissions exam were scores, placing them into discrete

categories: excellent, basic (pass), and needs more work (not pass). To separate high per-

forming students, excellent was further split into A, A+, and A++. During 2014, more than

200,000 pupils took the Comprehensive Assessment Exam and applied to schools in their

district of residence.

Aside from changing the admissions criteria, Taiwanese authorities also changed the

assignment mechanism, introducing a deduction system. Loosely speaking, in Taiwan’s

deduction system, a student’s admissions score is reduced when a school is ranked lower.

Table 1 lists the deduction rule used in several large Taiwanese districts in its first year. In

Jibei, where roughly 60,000 students applied in 2014, a student’s score at her second choice

is reduced by 1, the score at her third choice is reduced by 2, and so on. In Yunlin, no points

are deducted for the first four choices, and 2 points are deducted from choices five through

eight.1 This deduction system represents a new class of matching mechanisms, which we

term Taiwan mechanisms.

1In some accounts, deduction involves adding points to higher ranked choices. This is identical to de-

ducting points from lower ranked choices.
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There are many signs that the deduction system is one of the major reasons for nationwide

protests. A China Post editorial states (Wei 2014):

It is outrageous that the students have to have points deducted from their scores because they

fill out the wrong slots; it is because of this that many students with A+ in all subjects

eventually have to go to the same school with those who have achieved lower scores.

Despite calls to adopt a system where “students can choose the school they want according

to their results” (Wei 2014), senior Taiwanese leadership has kept the deduction system for

the last five years with only slight modifications, shown in Table 2.

As far as we know, the only other paper to study Taiwan’s new system is Hsu (2014), who

studies the new admissions test. Our work is most closely related to Ergin and Sönmez (2006)

and Pathak and Sönmez (2008). Both papers consider the equilibrium of the preference

revelation game induced by the Boston mechanism under different assumptions on player

sophistication. The results are related because the Taiwan mechanism generalizes aspects of

the Boston mechanism. Chen and Kesten (2017)’s study of Chinese college admissions is also

related since the permanency-execution period in China is related to deduction. Balinski and

Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003) initiated the formal research on the

mechanism design approach to student assignment. We refer interested readers to Pathak

(2016) for a recent survey of this literature.

In the next section, after introducing the model and formal definitions, we examine the

incentive properties of Taiwan mechanisms, showing that they can be compared in terms

of manipulation based on a natural ordering on their deduction points. In Section 3, we

analyze the equilibrium of the preference revelation game induced by the Taiwan mechanism

and compare it with the deferred acceptance algorithm. The last section concludes.

2 Model

2.1 Primitives

In a school choice problem, there is a finite set of students and schools, each with maximum

capacity. Each student has a preference over all schools and remaining unassigned, and a

priority score at each school.

Formally, a school choice problem includes:

1. students I = {i1, ..., in},

2. schools S = {s1, ..., sm},

3. capacity vector q = (qs1 , ..., qsm),
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4. list of strict student preferences PI = (Pi1 , ..., Pin), and

5. list of strict school priority score profiles π = (πs1 , ..., πsm).

For any student i, Pi is a strict preference relation over S ∪ {∅}, where ∅ denotes being

unassigned and sPi∅ means student i considers school s acceptable.2 For any student i, let

Ri denote the “at least as good as” relation induced by Pi. We denote the rank of school s

under Pi with rs(Pi), i.e., rs(Pi) = |{s′ ∈ S ∪{∅} : s′Pis}|+ 1. For any school s, the function

πs : {i1, . . . , in} → R is school s’s priority score profile such that πs(i) = πs(j) if and only

if i = j. We say πs(i) > πs(j) means that student i has higher priority than student j at

school s. The priority order of school s over students implied by πs is �πs , i.e. i �πs j if and

only if πs(i) > πs(j). Let πmax be the maximum possible score.

We fix the set of students and schools and capacity throughout the paper, so (P, π)

denotes a school choice problem. The outcome of a school choice problem is a matching,

µ : I → S ∪ {∅}, or a function such that |µ−1(s)| ≤ qs for any school s ∈ S. µ(i) is the

assignment of student i under matching µ. With slight abuse of notation, we use µ(s) instead

of µ−1(s) in the rest of the paper.

A matching µ is Pareto efficient if there is no other matching ν such that ν(i)Riµ(i) for

all i ∈ I and ν(j)Pjµ(j) for some j ∈ I. A matching µ is individually rational if there is

no student i such that ∅Piµ(i). A matching µ is non-wasteful if there is no student-school

pair (i, s) such that sPiµ(i) and |µ(s)| < qs. A matching µ is fair if there is no student-school

pair (i, s) such that sPiµ(i) and πs(i) > πs(j) for some j ∈ µ(s).

A matching µ is stable if it is individually rational, non-wasteful, and fair. It is well-

known that there exists a stable matching that is weakly preferred to any stable matching by

each student (Gale and Shapley 1962). We refer to this matching as the student-optimal

stable matching.

A mechanism, denoted by ϕ, is a systematic procedure that selects a matching for each

problem. Let ϕ(P, π) denote the matching selected by ϕ in problem (P, π), ϕ(P, π)(i) denote

the assignment of student i, and ϕ(P, π)(s) denote the set of students assigned to school s.

We say a mechanism ϕ is Pareto efficient (non-wasteful) [stable] if ϕ(P, π) is Pareto efficient

(non-wasteful) [stable] for any (P, π).

A mechanism ϕ is vulnerable to manipulation in (P, π) if there exists i and P ′i such

that

ϕ(P ′i , P−i, π)(i)Piϕ(P, π)(i),

where P−i = (Pj)j 6=i. A mechanism ϕ is strategy-proof if there is no problem for which it

is vulnerable to manipulation.

2Hereafter, we consider ∅ as a “null” school with q∅ = |I|.
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2.2 Taiwan Mechanisms

Taiwan mechanisms are a hybrid between the student-proposing deferred acceptance and

Boston mechanisms. To define a Taiwan mechanism, we first describe these two mechanisms.

Given (P, π), the student-proposing deferred acceptance (DA) mechanism computes

its outcome as follows:

Step 1: Each student i applies to her best choice, possibly ∅, according to Pi. Each school

s tentatively accepts the best qs students among all applicants according to πs and

rejects the rest.

...

Step k: Each student i applies to her best choice which has not rejected her yet, possibly ∅,
according to Pi. Each school s tentatively accepts the best qs students among all

applicants according to πs and rejects the rest.

The algorithm terminates when there are no more rejections. Students are assigned to

the choices they have applied in the last step.

Given (P, π), the Boston mechanism (BM) computes its outcome as follows:

Step 1: Each student i applies to her best choice, possibly ∅, according to Pi. Each school

s permanently accepts the best qs students among all applicants according to πs and

rejects the rest. Each accepted student and her assigned seat are removed.

...

Step k: Each remaining student i applies to her kth choice, possibly ∅, according to Pi. Each

school s permanently accepts the best students among all applicants according to πs

up to the number of its remaining seats and rejects the rest. Each accepted student

and her assigned seat are removed.

The algorithm terminates when there are no more rejections.

A Taiwan mechanism can be implemented by deducting points from student priority

scores and then applying DA to the resulting problem. Define a deduction rule as

λ = (λ1, λ2, ..., λ|S|+1) ∈ R|S|+1
+

such that λ1 = 0 and λk ≤ λk+1 for any k ∈ {1, 2, ..., |S|}. For any two deduction rules λ

and λ′, if λk ≥ λ′k for all k ∈ {1, 2, ..., |S|+ 1} and λk′ > λ′k′ for some k′ ∈ {1, 2, ..., |S|}, then

λ > λ′.
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The Taiwan mechanism associated with deduction rule λ is TMλ. For problem (P, π),

the outcome of TMλ is simply DA(P, π̂λ) where for each student-school pair (i, s),

π̂λs (i) = πs(i)− λrs(Pi).

When deduction points are zero, the associated Taiwan mechanism produces the same out-

come as DA. That is, if λ1 = (0, 0, ..., 0), then

TMλ1

(P, π) = DA(P, π).

When deduction points are very large, the Taiwan mechanism produces the same outcome

as BM. That is, if λ2 = (0, πmax, 2πmax, ..., |S|πmax), then

TMλ2

(P, π) = BM(P, π).

Since the Taiwan mechanism can be implemented as DA with different inputs, it inherits

some properties of DA. Since DA is non-wasteful and individually rational, TMλ(P, π) is

non-wasteful and individually rational for any λ and (P, π).

Through the deduction rule, Taiwan mechanisms can produce the same outcome as a

large number of other mechanisms. Aside from DA and BM, the First Preference First

(FPF) mechanisms outlawed in England described by Pathak and Sönmez (2013) are in

the class of Taiwan mechanisms if the deduction rule can depend on the school. Since the

Chinese Parallel mechanisms described by Chen and Kesten (2017) span the DA and BM

extremes, they can also be represented as a Taiwan mechanism.3

We make two assumptions throughout the rest of the analysis. Since we are motivated

by Taiwanese policy developments, we assume that all schools share the same strict priority

score profiles.

Assumption 1. For all s, s′ ∈ S, πs = πs′.

In Taiwan, student priority score is determined by a combination of measures including

test scores. It is the same at all schools in a district.4 We also assume that there are no ties

in the deducted priority scores.

3In particular, a deduction rule would be related to the permanency-execution period in the Chinese

parallel mechanism. If the choices within an execution period all have the same deduction points, and the

deduction points in an earlier block are all sufficiently larger than those in a later block, then such a deduction

rule produces the same outcome as the Chinese Parallel mechanism.
4This assumption is consistent with the tie-breaker in use. The Appendix presents two examples showing

that our main results do not carry over to the environment where priorities may differ across schools.
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Assumption 2. For any preference profile P , there are no ties in the deducted priority after

applying the deducted rule λ to the problem (P, π). That is, for all P, s ∈ S, π̂λs (i) = π̂λs (j)

implies that i = j.

To understand the properties of Taiwan mechanisms, consider the following example:

Example 1. There are four schools, S = {a, b, c, d}, each with one seat, and four students,

i1, i2, i3, and i4. The student priority scores for each school s ∈ S are: πs(i1) = 100,

πs(i2) = 50, πs(i3) = 11, and πs(i4) = 0. Let πmax = 110. The preferences of students are:

Pi1 : a b c d ∅
Pi2 : a b c d ∅
Pi3 : b c d a ∅
Pi4 : c a d b ∅

.

Consider two different deduction rules: λ1 = (0, 41, 45, 51, 51) and λ2 = (0, 110, 220, 330, 440).

The corresponding adjusted priority orders π̂λ
1

and π̂λ
2

are:

π π̂λ
1

π̂λ
2

a: i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i4 i3

b: i1 i2 i3 i4 i1 i3 i2 i4 i3 i1 i2 i4

c: i1 i2 i3 i4 i1 i2 i4 i3 i4 i3 i1 i2

d: i1 i2 i3 i4 i1 i2 i3 i4 i3 i4 i1 i2

.

The table orders applicants at schools from left to right, so that, e.g., πa(i1) > πa(i2) >

πa(i3) > πa(i4).

Under problem (P, π), the matching produced by DA is:(
i1 i2 i3 i4

a b c d

)
.

The matching produced by the Taiwan mechanism with deduction λ1, i.e. TMλ1
, is:(

i1 i2 i3 i4

a c b d

)
.

The matching produced by TMλ2
= BM is:(

i1 i2 i3 i4

a d b c

)
.
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2.3 Comparing Incentives Across Mechanisms

When deduction points are very large, the Taiwan mechanism is equivalent to BM and

when deduction points are all zero, it reduces to a serial dictatorship (which is equivalent

to DA when school priorities are the same across all schools). A serial dictatorship is a

strategy-proof mechanism, while BM is highly manipulable. Does this comparison extend to

intermediate values of the deduction rule?

To answer this question, we use the following criteria to compare manipulation possibil-

ities across mechanisms developed by Pathak and Sönmez (2013).

Definition. Mechanism ψ is more manipulable than ϕ if

(i) in any (P, π) such that ϕ is vulnerable to manipulation, ψ is also vulnerable to manip-

ulation, and

(ii) there exists some (P, π) such that ψ is vulnerable to manipulation, but ϕ is not.

If we only know that (i) holds and not sure whether (ii) holds or not, then we say that ψ is

at least as manipulable as ϕ.

Returning to Example 1, consider deduction rule: λ3 = (0, 9, 20, 30, 30). Note that

λ3
k < λ1

k for each k > 1. The adjusted priority orders π̂λ
3

and π̂λ
1

are:

π π̂λ
3

π̂λ
1

a: i1 i2 i3 i4 i1 i2 i4 i3 i1 i2 i3 i4

b: i1 i2 i3 i4 i1 i2 i3 i4 i1 i3 i2 i4

c: i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i4 i3

d: i1 i2 i3 i4 i1 i2 i3 i4 i1 i2 i3 i4

.

The outcome of the Taiwan mechanism with deduction λ1 is:(
i1 i2 i3 i4

a c b d

)
.

If student i2 instead reports b as her top choice, then she obtains a better outcome than

under truth-telling. She has a higher score than i3 and i4 under π̂λ
1

b when she ranks b as top

choice. Under TMλ1
, student i1 never applies to school b. Therefore, at school b, student i2

is not rejected and is assigned to the more preferred school b when she ranks b as top choice.

On the other hand, TMλ3
produces:(

i1 i2 i3 i4

a b c d

)
,
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which is the same as DA for (P, π). No student can manipulate TMλ3
in (P, π).

This example illustrates how the potential for manipulation increases as we increase

deduction points. Our first proposition shows the pattern holds in general.

Proposition 1. Under Assumptions 1 and 2, if λ1 > λ2, then TMλ1
is more manipulable

than TMλ2
.

Proof. We first show that there exists at least one problem (P, π) such that no student

can manipulate TMλ2
, but some student can manipulate TMλ1

. Suppose λ1
k = λ2

k for all

k < k̄ and λ1
k̄
> λ2

k̄
. Let S = {s1, ..., sk̄, ...}, I = {i1, ..., ik̄, ...}, and qs = 1 for all s ∈ S.

Student ik has the kth highest score under π. Student ik prefers school sk as top choice

for all k < k̄ and student ik prefers ∅ as top choice for all k > k̄ + 1. The preference

of ik̄ is: skPik̄sk+1Pik̄∅ for all k ∈ {1, ..., |S|}. School sk̄ is the only acceptable school for

ik̄+1. Let πs(ik̄)− λ1
k̄
< πs(ik̄+1) < πs(ik̄)− λ2

k̄
. Then, TMλ1

(P, π)(i) = TMλ2
(P, π)(i) for all

i ∈ I \{ik̄, ik̄+1}, TMλ2
(P, π)(ik̄) = TMλ1

(P, π)(ik̄+1) = sk̄. Then, student ik̄ can manipulate

TMλ1
by ranking sk̄ as top choice but no student can manipulate TMλ2

.

Next, we show that TMλ1
is at least as manipulable as TMλ2

. We present two observa-

tions and three lemmas that we use in the proof.

Observation 1. For any (P, π), λ and i ∈ I, if sPis
′ then π̂λs (i) ≥ π̂λs′(i).

This follows from the fact that λk ≤ λk−1 for any λ.

Observation 2. For any (P, π), there exists a unique stable matching which is the outcome

of the serial dictatorship (SD) mechanism under π and P . Hence, the unique stable matching

is also Pareto efficient.

This follows from the fact that πs = πs′ for any s, s′ ∈ S. With slight abuse of notation,

we use π(i) instead of πs(i) in the rest of the proof.

Lemma 1. For an arbitrary (P, π), let µ be the unique stable matching and ν be another

matching such that ν 6= µ. Then, there exists a student i such that µ(i)Piν(i) and µ(j) = ν(j)

for any student j with π(j) > π(i).

Proof. By Observation 2, µ is Pareto efficient and µ = SD(P, π). Since µ is Pareto efficient,

ν 6= µ implies that there exists a student i′ such that µ(i′)Pi′ν(i′). Without loss of generality,

let i be the student with the highest priority score under π who prefers µ to ν. On the

contrary, suppose there exists a student j with π(j) > π(i) and µ(j) 6= ν(j). Without loss of

generality, let j be such a student with the highest priority score under π. Then, ν(j)Pjµ(j).

However, this contradicts µ being the outcome of the SD and i being the highest-scoring

student who prefers µ to ν.
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We consider sequential version of DA defined by McVitie and Wilson (1970) where stu-

dents apply one-at-a-time according to a predetermined order χ and in each step the student

who has the highest rank in χ among the ones whose offer has not been tentatively accepted

applies.

Lemma 2. For arbitrary (P, π), λ, and order χ, consider any step k of the sequential DA

mechanism under (P, π̂λ) such that there is only one student i who has not been tentatively

accepted by some school in S ∪ {∅}. If school s that i applies to in step k tentatively accepts

her offer, then i is assigned to s when the sequential DA terminates.

Proof. Let tk̄ = π̂λs̄ (̄i) such that student ī applies in step k̄ of sequential DA to school s̄.

In step k of sequential DA, student i is tentatively accepted by school s if either the

number of tentatively accepted students in step k − 1 by s is less than qs or there exists a

student j who is tentatively accepted in step k− 1 by s and π̂λs (i) > π̂λs (j). If the prior case

holds, then the mechanism terminates and the desired result follows. If the later case holds,

by Observation 1 and the fact that in each future step at most one student is not tentatively

assigned tk′ < π̂λs (i) for any k′ > k. Therefore, i will not be rejected by s.

Lemma 3. For arbitrary (P, π) and λ, let µ = DA(P, π) = SD(P, π) and ν = TMλ(P, π) =

DA(P, π̂λ). If µ 6= ν, then there exists a student who can manipulate TMλ in (P, π).

Proof. First, we define an axiom, known as population monotonicity, that we use throughout

the proof.5 A mechanism ϕ is population monotonic if for any (I, S, q, P, π) after removal

of any student i the assignment of all remaining students are (weakly) improved, i.e. ϕ(I \
{i}, S, q, P−i, π|(I \ {i}))(j)Rjϕ(I, S, q, P, π)(j) for all j ∈ I \ {i} where π|(I \ {i}) is the

restriction of π on students in I \ {i}.
By Lemma 1, there exists a student i such that µ(i)Piν(i) and µ(j) = ν(j) for any

student j with π(j) > π(i). Since TMλ is non-wasteful, there exists a student k such that

ν(k) = µ(i) and π(i) > π(k) ≥ π̂λµ(i)(k). Under (P, π̂λ), we consider sequential DA for an

order χ such that student i is the last student under χ. First note that, when it is i’s

turn all seats at µ(i) are tentatively filled. Otherwise, i would be matched to µ(i) or better

school under ν. By the population monotonicity of (sequential) DA mechanism, when it is

i’s turn to apply there exists at least one student j′ who is tentatively accepted by µ(i) and

π(i) > π̂λµ(i)(k) ≥ π̂λµ(i)(j
′). This follows from the fact that under the tentative matching

attained just before i’s turn student k is assigned to weakly better school than ν(k) = µ(i)

and when the sequential DA terminates it selects matching ν. Hence, Lemma 2 implies that

student i can get µ(i) by ranking it as top choice.

5We also use population monotonicity in the proof of Proposition 3.
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To complete the proof of Proposition 1, let µ be the student optimal stable matching, i.e.

µ = SD(P, π) = DA(P, π), and ν1 and ν2 be the outcomes of TMλ1
and TMλ2

, respectively.

By Lemma 3, if ν1 6= µ, then there exists a student j who can manipulate TMλ1
.

We consider two more cases.

Case 1: ν1 = ν2 = µ. Suppose i is assigned school s by manipulating TMλ2
. For

both (P, π̂λ
1
) and (P, π̂λ

2
), we consider the sequential DA mechanism for an order χ in

which i applies last. Let ν̄1 and ν̄2 be the tentative allocations obtained just before i’s turn

for (P, π̂λ
1
) and (P, π̂λ

2
), respectively. By the fact that ν1 = ν2 = µ and Lemma 2 and

Observation 1, ν̄1(s′) = ν̄2(s′) = µ(s′) and for all s′Piµ(i). Since i can get s by manipulating

TMλ2
, there exists a student ī ∈ ν̄2(s) such that π̂λ

2

s (̄i) < π(i). Then, by the fact that

λ1 > λ2, π̂λ
1

s (̄i) < π(i). Hence, Lemma 2 implies that i can get s by ranking it as top choice

under TMλ1
.

Case 2: ν2 6= ν1 = µ. By Proposition 2 (see Section 3.1), ν1 and ν2 are Pareto efficient

under preference profile P . Hence, there exists at least one student k who prefers ν2(k) to

ν1(k). Let Ī = {i ∈ I|ν2(i)Piν
1(i)} and k ∈ Ī have higher priority score than all other

students in Ī, i.e., π(k) > π(j) for each j ∈ Ī \ {k}. That is, ν1(i)Riν
2(i) for each i ∈ I

with π(i) > π(k). Since ν1 = µ = SD(P, π), there exists at least one student ī such that

π(̄i) > π(k), ν2(k) = ν1(̄i) and ν1(̄i)Pīν
2(̄i). Let s = ν2(k) = ν1(̄i). Then, by the stability

of ν2 under (P, π̂λ
2
), we have π(k) ≥ π̂λ

2

s (k) > π̂λ
2

s (̄i). Then, by the fact that λ1 > λ2,

π(k) > π̂λ
2

s (̄i) ≥ π̂λ
1

s (̄i). Then for (P, π̂λ
1
), we consider sequential DA mechanism for an

order χ in which k applies last. Let ν̄1 be the tentative allocation obtained just before k’s

turn for λ1. By the fact that ν1 = µ and Lemma 2, ν̄1(s′) = µ(s′) for all s′Pkµ(k). Hence,

Lemma 2 implies that k can get s by ranking it as top choice under TMλ1

.

Within the class of Taiwan mechanisms, BM involves large deduction points.6 Therefore,

Proposition 1 implies the following.

Corollary 1. The Boston mechanism is more manipulable than any other Taiwan mecha-

nism.

Proposition 1 relates to a statement of a principal in Tapei who remarked (CNA 2014a):

as long as the deduction system exists, problems can not be solved.

That is, manipulation possibilities are only eliminated when there is zero deduction.

There have been several changes to deduction rules since the system’s first year in 2014.

Table 2 shows that in most cases, districts have relaxed the deduction rules compared to

6In particular, if TMλ(P, π) 6= BM(P, π), then there exists λ′ > λ such that TMλ′
(P, π) 6= BM(P, π).
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the first year. For instance, in Gaoxiong, each choice has a weakly smaller deduction in

2015 than in 2014. The two largest districts by number of applications, Jibei and Zhongtou,

also changed their deduction rules to reduce deduction amounts. Proposition 1 implies that

each of these changes have made the mechanism less manipulable. However, not all changes

involve moves to less manipulable mechanisms. For instance, in Jinmen, there were no

deductions in 2014, while in 2015 there were deductions for all non-top choices.

3 Equilibrium Analysis

3.1 Characterization

We next analyze the equilibrium properties of Taiwan mechanisms by considering the Nash

equilibrium of the simultaneous preference revelation game induced by a Taiwan mechanism,

or hereafter the Taiwan game.

Following Pathak and Sönmez (2008), we assume there are two types of students. Many

families report confusion about the new Taiwanese mechanism, but some have learned about

the mechanism’s rules. Let N and M denote the set of sincere students and sophisticated

students, respectively. For each i ∈ N , the strategy space of student i is {Pi}, so i can only

submit her true preference. This modeling choice captures the fact that some participants

may not understand how deductions change their incentives. For each j ∈ M, student j’s

strategy space is all strict preferences over schools including being unassigned.

To understand properties of equilibrium, we define the augmented priority scores of

sincere and sophisticated students as follows.

Definition. Given a problem (P, π) and deduction rule λ, construct an augmented pri-

ority score list π̃ as:

(i) For each school s, adjust the priority score of each sincere student i ∈ N according to

π̃s(i) = πs(i)− λrs(Pi) (i.e., apply the deduction rule to sincere students for school s)

(ii) For each school s, keep the priority score for each sophisticated student j ∈ M
unchanged π̃s(j) = πs(j).

In Example 1, the unique Nash equilibrium outcome and the unique stable matching

under the augmented priority scores coincide.

Example 1 (cont). Suppose the deduction rule is λ1, student i1 and i3 are sincere, and

student i2 and i4 are sophisticated. Students i1 and i3 will report abcd∅ and bcda∅, respec-

tively. Independent of the strategies played by the other students, i1 is assigned school a in

any equilibrium outcome. Moreover, student i2 is assigned school b when she ranks it first
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and i3 is assigned school b when i2 does not rank b first. Hence, in any equilibrium i2 ranks

b first and is assigned b. Similarly, when i2 ranks b first, student i4 can be assigned school c

by only ranking it first.

Hence, there is a unique Nash equilibrium outcome:(
i1 i2 i3 i4

a b d c

)
.

The augmented priority orders associated with π̃ are:

a: i1 i2 i4 i3

b: i1 i2 i3 i4

c: i1 i2 i4 i3

d: i2 i1 i4 i3

.

The only stable matching under (P, π̃) is(
i1 i2 i3 i4

a b d c

)
,

which is the same as the Nash equilibrium outcome.

The observation that the Nash equilibrium outcome is related to the stable matching

under the augmented priority score holds generally.

We first show that under problem (P, π̃) there exists a unique stable matching.

Proposition 2. Under Assumptions 1 and 2, for any given (P, π), λ, M and N , let π̃ be

the augmented priority score list. Under (P, π̃), there exists a unique stable matching and it

is Pareto efficient.

Proof. By using a recursive procedure, under (P, π̃), we show that one can always find a

student who has the highest priority among the remaining students at her top choice among

the remaining schools and we remove that student and a seat from that school. This student

will be matched to her top choice among the remaining ones in any stable matching and

there will not exist a possible welfare improvement trade between the remaining students

and this student.

Let ik be the student who has the highest score in π among the students remaining in

Step k ≥ 1 of this procedure. We start with Step 1 in which all students and all seats are

available. By our construction, i1 has the highest priority at her top choice no matter if she

is sophisticated or sincere. Moreover, she will be assigned to her top choice in any stable

matching, and therefore her welfare cannot be improved by trading with the other students.

13



We remove i1 and one seat from her top choice and consider the remaining students and

schools in Step 2.

Suppose our claim holds for the first k − 1 steps of this procedure. Now consider Step

k. If ik is a sophisticated student, then she has the highest priority among the remaining

students at all remaining schools. Hence, the claim holds. Suppose ik is a sincere student.

Let s1 be her top choice among the remaining schools. If the student with the highest

priority for s1 among the remaining ones prefers s1 most, then we are done. Otherwise, we

consider the student i1 6= ik with the highest priority at s1 among the remaining students

and her most preferred school among the remaining ones denoted by s2 6= s1. Note that,

ik cannot have higher priority than i1 at school s2. If the student with the highest priority

for s2 among the remaining ones prefers s2 most, then we are done. Otherwise, we consider

the student i2 /∈ {i1, ik} with the highest priority at s2 among the remaining students and

her most preferred school among the remaining ones denoted by s3 /∈ {s1, s2}. Note that,

ik and i1 cannot have higher priority than i2 at school s3. By finiteness, we will eventually

find a student i and school s such that i has the highest priority at s among the remaining

students and i prefers s most among the remaining schools. Hence, in any stable matching

i is assigned to s and there cannot be a welfare improving trade involving student i.

Next, we consider the Taiwan game for deduction rule λ.

Proposition 3. Under Assumptions 1 and 2, for any given (P, π), λ, M and N , let π̃ be

the augmented priority score list. Then, there exists a unique Nash equilibrium outcome of

this game, which is Pareto efficient and equivalent to DA(P, π̃).

Proof. By our construction of π̃, when each sophisticated student i ranks DA(P, π̃)(i) as

top choice and each sincere student j plays Pj, TM
λ selects DA(P, π̃) and no sophisticated

student profitably manipulates. Hence, DA(P, π̃) is a Nash equilibrium outcome and by

Proposition 2, it is Pareto efficient.

Since under (P, π̃) there exists a unique stable matching (by Proposition 2), we will prove

that there cannot be a Nash equilibrium outcome which is not stable.

On the contrary, let Q be a Nash equilibrium profile and the outcome of TMλ under

this strategy profile is µ, i.e., TMλ(Q, π) = µ, and µ is not stable under (P, π̃). Note that,

TMλ(Q, π) = DA(Q, π̂λ) where π̂λ is the implied by (Q, π) and deduction rule λ.

If matching µ is individually irrational, then there exists a student i who is assigned to

an unacceptable school, i.e. ∅Piµ(i). Since Qj = Pj for each j ∈ N and TMλ is individually

rational, i cannot be a sincere student. Then, individual rationality of TMλ implies that

ranking ∅ as top choice is a profitable deviation for i.

Suppose µ is wasteful or not fair under (P, π̃). Then, there exists a student-school pair

(i, s) such that sPiµ(i) and either |µ(s)| < qs or π̃s(i) > π̃s(j) for some j ∈ µ−1(s). Under
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both cases, we consider sequential version of DA under (Q, π̂λ) such that i applies last. We

first suppose the former case holds. Since Qj = Pj for each j ∈ N and TMλ is nonwasteful,

i cannot be a sincere student. Then population monotonicity of DA implies that i can

profitably deviate by ranking school s as top choice. Now, we consider the latter case. By

our construction, if i ∈ N and π̃s(i) > π̃s(j) then π̂λs (i) > π̂λs (j). Hence, i cannot be sincere.

If i is sophisticated, then the fact that DA is population monotonic, the construction of π̃,

and the proof of Lemma 2 imply that i can profitably deviate by ranking school s first.

This result shows that the Taiwanese mechanism favors sophisticated students over sin-

cere students, since in equilibrium, deduction only applies to sincere students.

3.2 Becoming Sophisticated

What happens to a sincere student who learns the rules of the mechanism? In our example,

a student who becomes sophisticated becomes (weakly) better off.

Example 1 (cont.) In Example 1, if i2 and i4 are sophisticated, under TMλ1
the unique

equilibrium outcome is (
i1 i2 i3 i4

a b d c

)
.

If i3 becomes sophisticated, then the augmented priority orders associated with π̃ are:

a: i1 i2 i3 i4

b: i1 i2 i3 i4

c: i1 i2 i3 i4

d: i2 i1 i3 i4

.

The unique equilibrium outcome when i2, i3 and i4 are sophisticated is(
i1 i2 i3 i4

a b c d

)
.

Hence, by becoming sophisticated, i3 is better off.

This example illustrates a more general phenomenon summarized by our next proposition.

Proposition 4. Under Assumptions 1 and 2, for any given (P, π), λ,M and N , if a sincere

student i ∈ N becomes sophisticated, then under the equilibrium outcome of TMλ, i becomes

(weakly) better off.
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Proof. Suppose that π̃1 is the augmented priority score profile when i is sincere, and π̃2 is

the one when i becomes sophisticated. By definition, for all s ∈ S π̃1
s(j) = π̃2

s(j) for all

j 6= i and π̃1
s(i) ≤ π̃2

s(i). That is, i is improved under the associated priority orders when she

becomes sophisticated. By Proposition 3, under both cases the unique equilibrium outcome

is equivalent to DA(P, π̃1) and DA(P, π̃2), respectively. Since, DA respects improvement in

priorities (see Balinski and Sönmez (1999)), DA(P, π̃2)(i)RiDA(P, π̃1)(i).

When one sincere student becomes sophisticated, she obtains a weakly better assignment.

Does this imply that other sophisticated students obtain weakly worse assignments? The

answer turns out to be negative, as the following example illustrates.

Example 2. There are four schools, S = {a, b, c, d}, each with one seat, and four students,

i1, i2, i3, and i4. The student priority scores for each school s ∈ S are: πs(i1) = 100,

πs(i2) = 50, πs(i3) = 11, and πs(i4) = 0. The preferences of students are:

Pi1 : a b c d ∅
Pi2 : a b d c ∅
Pi3 : b c d a ∅
Pi4 : d c a b ∅

.

Consider the deduction rules: λ1 = (0, 41, 45, 51, 51). Suppose initially only i4 is sophis-

ticated. Then, under TMλ1
the unique equilibrium outcome is(

i1 i2 i3 i4

a d b c

)
.

Now consider the case where i2 becomes sophisticated. Then, under TMλ1
when i2 and i4

are sophisticated the unique equilibrium outcome is(
i1 i2 i3 i4

a b c d

)
.

Therefore, student i4 is better off after i2 becomes sophisticated.

3.3 Changing Mechanisms

Since the Taiwan mechanism is manipulable, it is natural to compare it to a non-manipulable

mechanism. The most natural alternative is the serial dictatorship, a strategy-proof and

efficient mechanism. In the setting where each school uses the same score, DA produces the

same outcome as a serial dictatorship.

The first question we examine is whether sophisticated students prefer the Taiwan mech-

anism over a serial dictatorship. Policy discussions in Boston about the mechanism centered
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on the fact some families were exploiting their strategic knowledge to the detriment of fam-

ilies who do not have similar knowledge. Does the same argument apply in Taiwan?

The answer is no: a sophisticated student may in fact prefer DA over the Taiwan mech-

anism. In Example 2, under a serial dictatorship, we obtain matching(
i1 i2 i3 i4

a d c d

)
.

Under the Nash equilibrium where only student i4 is sophisticated, we obtain matching(
i1 i2 i3 i4

a d b c

)
.

Since i4 prefers d to c, she is worse off under the unique equilibrium of the Taiwan mechanism.

We also do not have a clear welfare comparison for sincere students. The next example

shows that a sincere student need not be better off under this strategy-proof alternative.

Example 1 (cont.) In Example 1, sincere student i3 is assigned a more preferred school b

under TMλ1
than school c under the serial dictatorship mechanism.

So why has the Taiwan mechanism persisted for the last five years in the face of massive

condemnation and street protests? One reason is that not everyone, even sincere students,

would be better off under the strategy-proof alternative. Indeed, this sentiment was expressed

by Education Minister Chiang Wei-ling (Wei 2014):

no new policy would be carried out unless it would “benefit all students.”

4 Conclusion

A new Taiwanese school assignment has generated widespread turmoil and protests. This

paper reports on the incentive properties of this mechanism and characterizes the equilibrium

of the induced preference revelation game. Our results show that any mechanism using (non-

zero) deduction is manipulable, and that the scope for manipulation increases with the size of

deduction. With sincere and sophisticated players, the Taiwanese mechanism has a unique

equilibrium, which can be characterized in terms of a stable matching of an alternative

economy, where deduction applies to sincere students.

Our analysis provides a rationale for the reluctance of Taiwanese authorities to move to a

strategy-proof alternative, illustrating a broader dynamic seen with manipulable mechanisms

used in school choice and elsewhere. Boston Public Schools abandoned their mechanism in

2005, citing the desire to level the playing field between participants who understand the

rules of the mechanism and those do not. Pathak and Sönmez (2008) formalize the sense in
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which sophisticated players may prefer the manipulable mechanism. Under the Taiwanese

mechanism, no particular group, sophisticated or sincere, would have common interests in

the choice of mechanisms. This fact illustrates the broader theme that changes in market

designs rarely involve Pareto improvements for even well identified sets of participants, and

this may stand in the way of reforms.
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Abdulkadiroğlu, A., and T. Sönmez (2003): “School Choice: A Mechanism Design

Approach,” American Economic Review, 93, 729–747.

Balinski, M., and T. Sönmez (1999): “A Tale of Two Mechanisms: Student Placement,”

Journal of Economic Theory, 84, 73–94.

Chen, Y., and O. Kesten (2017): “Chinese College Admissions and School Choice Re-

forms: A Theoretical Analysis,” Journal of Political Economy, 125(1), 99–139.

CNA (2014a): “12-Year Compulsory Education: Polarizing Results for the

First Round Admission and Strategies for the Second and the Special

Round Admission,” Central News Agency, Taipei, June 24; Available at:

http://www.ntdtv.com/xtr/gb/2014/06/24/a1118547.html, Last accessed: June 2015.

(2014b): “Education Minister Apologizes over High School Admission Reform,”

Central News Agency, Taipei, June 11.

Ergin, H. (2002): “Efficient Resource Allocation on the Basis of Priorities,” Econometrica,

70, 2489–2498.

Ergin, H., and T. Sönmez (2006): “Games of School Choice under the Boston Mecha-

nism,” Journal of Public Economics, 90, 215–237.

Gale, D., and L. S. Shapley (1962): “College Admissions and the Stability of Marriage,”

American Mathematical Monthly, 69, 9–15.

Hsu, C.-L. (2014): “Promoting Diversity of Talents: A Market Design Approach,” Unpub-

lished Working Paper, University of Illinois at Urbana-Champaign.

I-chia, L. (2014): “Parents, teachers protest senior-high entrance process,” Taipei Times,

Front Page, June 22.

McVitie, D. G., and L. Wilson (1970): “Stable Marriage Assignments for Unequal

Sets,” BIT, 10, 295–309.

Pathak, P. A. (2016): “What Really Matters in Designing School Assignment Mecha-

nisms,” Advances in Economics and Econometrics, 11th World Congress of the Econo-

metric Society.

Pathak, P. A., and T. Sönmez (2008): “Leveling the Playing Field: Sincere and Sophis-

ticated Players in the Boston Mechanism,” American Economic Review, 98(4), 1636–1652.

19



(2013): “School Admissions Reform in Chicago and England: Comparing Mecha-

nisms by their Vulnerability to Manipulation,” American Economic Review, 103(1), 80–

106.

Wei, K. (2014): “High school enrollment results announced amid fierce protest,” The China

Post, June 21.

20



District Applicants Deduction	Rule Total	Score
#	of	

Options
Max	#	of	
Rankings

School	x	
Major

(1) (2) (3) (4) (5) (6)
Gaoxiong 25752 0,2,4,6,8,10,12 100 52 7 N
Hualian 3466 0,4,8,12,16 100 45 5 Y
Jiayi 7484 0,0,1,1,2,2,3,3,4,4,5,5,5,5,5 87 86 15 Y
Jibei 62694 0,1,2,3,4,5,6,7,8,9,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12 90 139 30 N

Jinmen 652 no	deductions 46 12 12 Y
Penghu 869 0,1,2,3,4,5,5,5,5,5,5,5,5,5 78 14 14 Y
Pingdong 7238 0,2,4,5,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 79 75 30 Y
Taidong 2270 0,3,6,9,12,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15 100 38 30 Y
Tainan 17383 0,3,4,5,6 100 48 5 N
Taolian 24001 0,0,3,3,6,6,9,9,12,12,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15 100 34 30 N
Yilan 4631 no	deductions 48 40 n/a Y
Yunlin 5829 0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6,9,9,9,9 90 68 20 Y

Zhanghua 13465 0,0,2,2,4,4,6,6,8,8,10,10,10,…,10 90 101 n/a Y
Zhongtou 36333 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,30,30,

30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30
100 63 50 N

Zhumiao 15561 0,0,0,3,3,3,6,6,6,9,9,9,10,10,10 100 39 15 N

Table	1.		Deduction	Rules	and	Number	of	Applicants	Across	Large	Taiwanese	Districts	in	2014

Notes.	Compiled	by	authors	from	online	sources.		Deduction	points	are	listed	up	to	the	number	of	choices	an	applicant	can	rank.			An	ellipsis	indicates	that	all	
remaining	choices	have	the	same	deduction.		Number	of	options	counts	public	and	vocational	schools	or	school-majors	in	the	choice	set.			Options	that	are	school-
major	combinations	are	indicated	in	column	(6).	



District Year	of	Change From To
Gaoxiong 2015 0,2,4,6,8,10,12 0,0,0,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4

2016 0,0,0,2,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2
Hualian 2015 0,4,8,12,16 0,0,0,2,2,2,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,16,16,16,18,18,18,	

20,20,20,20,20,20,20,20,20,20Jiayi 2015 0,0,1,1,2,2,3,3,4,4,5,5,5,5,5 0,0,0,2,2,2,4,4,4,6,6,6,8,8,8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
2016 0,0,0,2,2,2,4,4,4,6,6,6,8,8,8,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4

Jibei 2015 0,1,2,3,4,5,6,7,8,9,10,10,10,10,10,10,10,10,10,10,12,12,12,12,12,12,12,12,12,12 0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4
Jinmen 2015 no	deductions 0,2,4,5,6,6,6,6,7,7,7,7

2016 0,2,4,5,6,6,6,6,7,7,7,7 0,1,2,3,4,4,4,4,5,5,5,5
Pingdong 2015 0,2,4,5,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7 0,0,0,2,2,2,4,4,4,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
Taidong 2015 0,3,6,9,12,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15 0,3,6,9,12,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18
Tainan 2015 0,3,4,5,6 0,2,3,4,5,10,…,10

2016 0,2,3,4,5,10,…,10 0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,…,5
Taolian 2017 0,0,0,3,3,3,6,6,6,9,9,9,12,12,12,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15 0,0,0,3,3,3,6,6,6,9,9,9,12,12,12,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14
Yilan 2018 no	deductions 0,0,0,0,2,2,2,2,4,4,4,4,6,6,6,6,9,9,9,9
Yunlin 2016 0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4 0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4

Zhanghua 2015 0,0,2,2,4,4,6,6,8,8,10,10,10,…,10 0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,
12,12,12,13,13,13,14,14,14,15,15,15

2016 0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,
12,12,12,13,13,13,14,14,14,15,15,15

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

Zhongtou 2015 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,30,
30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30,30

0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

Zhumiao 2015 0,0,0,3,3,3,6,6,6,9,9,9,10,10,10 0,0,0,3,3,3,5,5,5,7,7,7,9,9,9
Notes.	Compiled	by	authors	from	online	sources.				Deduction	points	are	listed	up	to	the	number	of	choices	an	applicant	can	rank.	An	ellipsis	indicates	that	all	remaining	choices	have	the	same	deduction.

Table	2.		Changes	to	Deduction	Rules



A Beyond Taiwan: Heterogeneous Priorities

In this appendix, we examine two examples of deduction mechanisms without Assumption

1 and show that Propositions 1 and 3 no longer apply. The first example we consider shows

that opportunities for manipulation need not increase with higher levels of deduction.

Example 3. There are five schools S = {a, b, c, d, e} and five students I = {i1, i2, i3, i4, i5}.
Let qs = 1 for all s ∈ S. The priority scores of students for schools are as follow: πa(i1) = 100,

πa(i3) = 98, πa(i4) = 97, πb(i2) = 99, πb(i3) = 98, πc(i3) = 90, πc(i4) = 86, πc(i5) = 100,

πd(i4) = 100, πd(i5) = 90, and πe(i3) = 100. The preference of students are as follows:

Pi1 : a ∅
Pi2 : b ∅
Pi3 : a b c e ∅
Pi4 : a c d ∅
Pi5 : d c ∅

.

We consider two deduction rules: λ = (0, 1, 2, 2, 2, 2) and λ′ = (0, 2, 7, 7, 7, 7). Given λ,

P and π, the implied priority scores profile πλ is: πλa (i1) = 100, πλa (i3) = 98, πλa (i4) = 97,

πλb (i2) = 99, πλb (i3) = 97, πλc (i3) = 88, πλc (i4) = 85, πλc (i5) = 99, πλd (i4) = 98, πλd (i5) = 90,

and πλe (i3) = 98. Given λ′, P and π, the implied priority scores profile πλ
′

is: πλ
′
a (i1) = 100,

πλ
′
a (i3) = 98, πλ

′
a (i4) = 97, πλ

′

b (i2) = 99, πλ
′

b (i3) = 96, πλ
′
c (i3) = 83, πλ

′
c (i4) = 84, πλ

′
c (i5) = 98,

πλ
′

d (i4) = 93, πλ
′

d (i5) = 90, and πλ
′
e (i3) = 93.

In this example, there is an Ergin (2002) cycle under π̂λ and π and such a cycle does not

exist under π̂λ
′
.

In this problem, TMλ selects:

µ =

(
i1 i2 i3 i4 i5

a b e d c

)
.

In this problem, TMλ′ selects:

ν =

(
i1 i2 i3 i4 i5

a b e c d

)
.

Under TMλ, student i4 can manipulate her preferences by ranking s3 at the top and the

outcome is

ν =

(
i1 i2 i3 i4 i5

a b e c d

)
.

On the other hand, no student can benefit from manipulation under TMλ′ .
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Next, we show that under Taiwan mechanism without Assumption 1, it is possible for

there to be a unique Nash equilibrium outcome in weakly undominated strategies, but that

outcome is not stable under augmented priorities. This example slightly modifies the previous

one.

Example 4. There are five schools S = {a, b, c, d, e} and six students I = {i1, i2, i3, i4, i5, i6}.
Let qs = 1 for all s ∈ S. Suppose all students are strategic. The priority scores of students

for schools are as follow: πa(i1) = 100, πa(i3) = 99.5, πa(i4) = 97, πb(i2) = 99, πb(i3) = 98.5,

πc(i3) = 90, πc(i4) = 86, πc(i5) = 100, πd(i4) = 100, πd(i5) = 90, πe(i3) = 100, and

πe(i6) = 99.5. The preference of students are as follows:

Pi1 : a ∅
Pi2 : b ∅
Pi3 : a b c e ∅
Pi4 : a c d ∅
Pi5 : d c ∅
Pi6 : e ∅

.

We consider the following deduction rule: λ = (0, 1, 2, 2, 2, 2). Given λ, π and P , the

implied priority scores profile πλ is: πλa (i1) = 100, πλa (i3) = 99.5, πλa (i4) = 97, πλb (i2) = 99,

πλb (i3) = 97.5, πλc (i3) = 88, πλc (i4) = 85, πλc (i5) = 99, πλd (i4) = 98, πλd (i5) = 90, πλe (i3) = 98

and πλe (i6) = 99.5.

Note that, i1 and i2 can obtain their top choices by submitting their true preferences

and they may not be assigned to their top choices if they do not rank them as top choice.

Hence, in any weakly undominated strategy i1 and i2 rank their true top choice at the top.

Independent of the other students ranking, student i4 and i5 can get one of their top two

choices by submitting their true preferences. Moreover, submitting something else is weakly

dominated by their true preference profile.

Similarly, if i6 ranks an unacceptable school at the top she may be assigned to it and

ranking ∅ as top choice is weakly dominated by her true preference profile. That is, for all

students except i3 submitting true preference is weakly undominated strategy. For such a

strategy profile i3’s best response is ranking e as top choice. Otherwise she will be unassigned.

The corresponding equilibrium outcome is:

µ =

(
i1 i2 i3 i4 i5 i6

a b e c d ∅

)
.
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