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Abstract

Prohibitions on using race in affirmative action have spurred a number of admissions
systems to adopt race-neutral alternatives that encourage diversity without appearing to
explicitly advantage any particular group. The new affirmative action system for Chicago’s
exam schools reserves seats for students based on their neighborhood and leaves the rest
to be assigned via merit. Neighborhoods are divided into four tiers based on an index of
socioeconomic disadvantage. At each school, an equal fraction of seats are reserved for each
tier. We show that the order in which seats are processed at schools provides an additional
lever to explicitly target disadvantaged applicants. We then characterize tier-blind processing
rules that do not explicitly discriminate between tiers. Even under these rules, it is possible
to favor certain applicants by exploiting the score distribution across tiers, a phenomenon we
call statistical targeting. When disadvantaged applicants systematically have lower scores
than other applicants, the optimal tier-blind processing order first assigns merit seats and
then the tier seats. Our analysis shows that Chicago has been providing an additional boost
to applicants from disadvantaged tiers beyond their reserved slots, a benefit comparable to

what they received from the 2012 increase in reserve size.
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“The way to stop discrimination on the basis of race is to stop discriminating on the basis of

race.”
— U.S. Supreme Court Justice John Roberts, 2007

1 Introduction

Affirmative action policies are often controversial because favoring one group inevitably involves
disadvantaging another. This sentiment was behind the U.S. Supreme Court’s decision to prohibit
racial quotas in K-12 public school admissions in 2007, and is part of a broader movement to
expand the definition of diversity in admissions. Against this backdrop, Chicago Public Schools
has embarked on one of the nation’s most significant experiments in race-neutral affirmative
action at the K-12 level, after abandoning their old system of racial quotas in 2009. In the
new system, Chicago’s neighborhoods are divided into one of four tiers based on an index of
socioeconomic disadvantage. At each school, 60% of seats are reserved to be assigned based on
an applicant’s neighborhood tier, and the remaining seats are assigned solely based on merit.!
Applicants can be admitted to both types of seats.?

Since the reservation size for the most and least advantaged neighborhoods is identical at each
school, the new Chicago system appears to be impartial because it does not favor one group of
applicants over another. However, we show that equal size reservations are not sufficient to avoid
explicitly benefitting a particular tier due to the order in which school seats are processed, known
as the precedence order. Our first result characterizes the precedence order which maximizes
representation of a given tier. Given the reserve size, the precedence order provides a lever for
explicit targeting of certain applicants. It is possible to tweak the competition for merit seats
in favor of applicants from a given tier by assigning seats reserved for all other tiers before the
merit seats. This precedence order handicaps applicants from other tiers in the competition for
merit seats.

It is clear that the Chicago’s identical reserve sizes were intended to give the impression
of impartiality under their race-neutral policy. Had the goal been to only admit the most
disadvantaged, the district could have simply reserved all of the seats for applicants from the
lowest tier neighborhoods. While that policy would encourage diversity, it would not reflect a

major rationale for exam schools: to group together and provide a curriculum tailored to high-

!The size of reservation has increased to 70% in 2012.

2The fact that there are multiple categories of applicants who quality for affirmative action and these appli-
cants can qualify for multiple types of seats is a widespread feature of affirmative action systems. For example,
affirmative action policies in India are implemented through a reservation system that is protected under the
Constitution, and this system earmarks up to 50 percent of government jobs and seats at publicly funded edu-
cational institutions to members of historically discriminated groups officially referred as Scheduled Castes (SC),
Scheduled Tribes (ST), and Other Backward Classes (OBC) (Bertrand, Hanna and Mullainathan 2010, Bagde,
Epple and Taylor 2016, Sénmez and Yenmez 2019a, Sonmez and Yenmez 2019b). Finland has gender quotas
which mandate at least 40% of each gender for public boards, committees, and councils (Strauss 2012). There
have similar proposals with 40% male, 40% female, and 20% open on government boards in Australia (Fox 2015).
The European Parliament (2008) details electoral gender quota systems used throughout Europe.



ability students.? The tradeoff between these two competing objectives — grouping together the
highest achievers and diversity — is reflected in systematic reviews of the policy. For example, a

report from a Blue Ribbon Commission (BRC) appointed to review Chicago’s policy states:

The Bllue] R[ibbon] Clommission] believes the district should strike a balance
between these two extremes [100% merit and 100% tier]. The BRC wants these
programs to maintain their academic strength and excellent record of achieve-
ment, but also believes that diversity is an important part of the historical success
of these programs. (page 2, BRC (2011))

To precisely describe an impartial system, we propose a definition of tier-blindness. A tier-
blind policy is one where the outcome does not depend on the labelling of tiers. We show that
tier-blind precedence rules are balanced: the same number of seats from each tier are processed
between any two merit seats, before the initial merit seat, and after the last merit seat. Tier-
blindness therefore implies that reserve sizes must be equal. It imposes an even more stringent
requirement since it rules out policies where the number of seats from each tier processed after
the merit seats differs by tier. In particular, it rules out the precedence that explicitly targets
applicants from a given tier.

Within the set of tier-blind policies, however, it is still possible to target applicants from
particular tiers by exploiting systematic differences in admissions scores, a phenomenon we call
statistical targeting. When applicants from the most disadvantaged tier have systematically
lower scores than those from other tiers, our main result characterizes the tier-blind precedence
rule that ensures greatest representation of the most disadvantaged applicants. Our result implies
that Chicago’s current tier-blind rule has been providing an additional boost to applicants from
the most disadvantaged tier beyond the reserve set-aside.

In 2012, in an effort to target more disadvantaged applicants, Chicago increased the tier set-
aside to 70% and added a sixth factor to the socioeconomic index. This change was symmetric:
each tier reservation increased by 2.5% of seats. Our last result shows that this increases the
assignment of applicants from the most disadvantaged neighborhoods under Chicago’s affirmative
action implementation.

We then turn to data from Chicago for two purposes. Since all of our theoretical results are
for a single school’s choice function, we examine the extent to which our results apply to a system
using deferred acceptance. This also provides a window to examine the practical relevance of key
assumptions about oversubscription and score distributions underlying our analysis. Second, we
examine the magnitude of explicit and statistical targeting. Our most important result is that
the change in assignment from the most disadvantaged tier due to the smaller merit fraction in

2012 is comparable to the change in assignment from switching the processing order, holding

3To more explicitly consider the policy objective, Ellison and Pathak (2016) develop a model of exam schools
where a policy maker values both curriculum matching and diversity, and use it to measure whether race-neutral
affirmative action systems can be an effective substitute for racial quotas.



fixed the merit fraction. Therefore, the bias in favor of the most disadvantaged due to statistical
targeting is similar to that from the more explicit change in reserve size.

Chicago is a compelling setting for studying affirmative action in school admissions for several
reasons. Given the schools’ high visibility and frequent appearance on lists of the best public
U.S. high schools, it is not surprising that Chicago’s reforms are seen as a model for other cities.
For instance, Kahlenberg (2014) argues that Chicago’s place-based affirmative action system is
a template for cities like New York, where there are concerns about students at flagship exam
schools not reflecting underlying district demographics. Moreover, the adoption of schemes like
Chicago’s seem to be a likely consequence of the 2007 U.S. Supreme Court ruling in Parents
Involved in Community Schools vs. Seattle School District No. 1, which prohibited explicit
racial criteria in K-12 admissions. Indeed, the U.S. Departments of Justice and Education have
held up race-neutral criteria based on geographic factors, as seen in Chicago, as a model for
other districts (OCR 2011).°> Finally, Chicago’s assignment scheme is a variant of the student-
proposing deferred acceptance algorithm, which is strategy-proof for participants.® This feature
allows for the straightforward computation of counterfactual affirmative action policies without
needing to model how applicants would submit preferences under these alternatives.

The consequences of allowing applicants to be admitted to different types of seats has been
studied in Dur, Kominers, Pathak and Sénmez (2016). That paper examines comparative statics
when there is only one reserve group, motivated by neighborhood priority in Boston’s school
choice system. The issues are more involved when there is more than one reserve group. More-
over, Dur et. al do not characterize optimal policies, which is our focus. Chicago also uses
scores in admissions which allows us to study statistical targeting, and there is no comparable
phenomenon with lottery based tie-breaking. Our analysis presents the first optimality results
for precedence policies in the context of the framework of matching with slot-specific priorities
(Kominers and Sénmez 2016).”

While our paper does not provide a complete welfare analysis of Chicago’s affirmative action
system, it does characterize the effects of an important policy lever relevant for any admissions
system that combines open and reserve seats. Given an underlying objective function and legal

constraints, we show how precedence orders can deliver distributional objectives beyond simply

“The NAACP Legal Defense Fund filed an Office for Civil Rights complaint with the US Department of
Education in September 2012, asserting that the admissions process at NYC’s exam schools violates the Civil
Rights Act of 1964 because it uses a single admissions test. Pending New York State legislation (Senate Bill
S7738) proposes to broaden the criteria for admissions.

®Kahlenberg (2008) reports that more than 60 public school districts use socioeconomic status as an admissions
factor.

5The mechanism design approach to student assignment was initiated by Balinski and Sénmez (1999) and
Abdulkadiroglu and Sénmez (2003). Both papers advocate the adoption of deferred acceptance (DA) in the
context of priority-based student assignment. Many urban school districts including Boston and New York utilize
DA (Abdulkadiroglu, Pathak, Roth and Sénmez 2005a, Abdulkadiroglu, Pathak and Roth 2005b, Pathak and
Sénmez 2008, Abdulkadiroglu, Pathak and Roth 2009, Pathak and Sénmez 2013, Pathak 2016).

"Chicago’s system motivated the model in an earlier version of that paper, Kominers and Sénmez (2013),
although they do not provide any analytical results for the application at CPS.



setting reserve sizes. Ellison and Pathak (2016)’s study of the efficiency of race-neutral admissions
policies, for instance, makes use of the results here when simulating alternative reserve policies.

Other related studies of affirmative action include Ehlers, Hafalir, Yenmez and Yildirim
(2014), Erdil and Kumano (2012), Hafalir, Yenmez and Yildirim (2013), Kamada and Kojima
(2014), and Kojima (2012).8 The model we study is based on a continuum model version of the
matching with slot-specific priorities model introduced by Kominers and Sénmez (2016). We
study a continuum model because it is easier analytically work with applicant score distribu-
tions. Like Echenique and Yenmez (2015), we characterize optimal choice rules focusing on a
given school. However, we take the affirmative action system as given and consider variations
in implementation, while Echenique and Yenmez (2015) derive affirmative action systems from
primitive axioms for diversity without considering the issues we examine here. Continuum mod-
els, like ours, are also used in a number of other recent papers including Abdulkadiroglu, Che
and Yasuda (2015), Azevedo and Leshno (2016), and Che, Kim and Kojima (2015).

The next section develops the model. Section 3 examines explicit targeting and characterizes
the best tier-sighted choice function for a given tier. Section 4 characterizes choice functions that
are tier-blind and characterizes the best and worst choice function under this constraint. Section
5 reports on data from Chicago Public Schools. The last section concludes. Proofs are given in

the appendix.

2 Model

2.1 Setup

We work with a continuum model to simplify the analysis. There is a mass n of students. Let
I denote the set of students. Throughout the analysis, we fix I. Each student belongs to a
socioeconomic category or tier ¢ € T = {1,2,..,t}. In Chicago, a student’s tier depends on
the attributes of her census tract. When a student applies to an exam school, she must take a
competitive admissions exam. The district then takes an equally-weighted combination of the
admissions test score, the applicant’s 7" grade GPA, and a standardized test score to generate a
composite score, which we denote by k € K = [k, k], where K is the continuum interval of the
possible scores. For a given student 4, his tier is given by ¢(i) and his composite score is given
by k(). A tier ¢ has mass n; of students, where ), n; = n. For any subset of students J C I,
we denote the set and mass of tier ¢ € T students with .J; and n{, respectively. For given tier t,
we denote the composite score density function of students in I; with f; : K — R and assume
that the density function has no atom. For a given subset of students J C I, let f/ : K — Rt
be the atomless density function of tier ¢ students in J. We represent the mass of tier ¢ students
with scores between ¢ and ¢’ < ¢ with f; fi(k)dk.

8A theoretical literature examines other aspects of affirmative action policies, including Coate and Loury
(1993), Sau-Chung (2000), Chan and Eyster (2003), Fryer, Loury and Yuret (2008), and Ray and Sethi (2010).



We are interested in understanding the properties of a school’s choice function. In the case of
a decentralized assignment system, our analysis captures considerations relevant for a particular
school. A centralized matching system based on the deferred acceptance algorithm can be in-
terpreted as an iterated implementation of choice functions across all schools, where in the first
iteration students apply to their top choices and in each subsequent iteration, students rejected
in earlier iterations apply to their next choices.? In Section 5, we examine the extent to which our
analysis of a single school’s choice function captures insights relevant for Chicago’s affirmative
action system, which employs the deferred acceptance algorithm to assign seats at ten schools.

In our continuum model, school capacity is modeled as a set of unit capacity intervals, which
we refer to as slots. Let S denote the finite set of slots each with a unit mass of seats to fill.
Then, the school has a mass |S| of seats to fill. There are ¢ + 1 types of slots: tier 1 slots, tier
2 slots, ...., tier ¢ slots, and merit slots. Function 7 : S — T U {m} specifies the type of each
slot. We denote the set of tier t slots as S; and the set of merit slots as S,,. Observe that
St ={se S| 7(s) =t}and S, = {s € S | 7(s) = m}. For each tier ¢, each slot s € S;
prioritizes all students in its tier I; over all other students. For each s € S}, students in tier ¢
are ordered by composite score. Students outside tier ¢ are ordered by composite score, but each
comes after students in tier ¢. Priority for each merit slot s € S,,, on the other hand, is solely
based on composite scores.

When a merit slot s, considers a set of applicants J, it admits the highest-scoring unit mass
subset of its applicants. Similarly, when a tier slot s; considers a set of applicants J, it admits
the highest-scoring unit mass of its applicants from tier ¢t. The cutoff scores for both types of
slots are determined by this process. Observe that for a merit slot s,,, the cutoff score k" for

J is given by

oyl

S [ k=1, (1)

t
=Ly

and for a tier slot s;, the cutoff score k% for J is given by
k
[ e =1. 2)
k5

If J is such the expression (1) or (2) does not equal 1, we set the corresponding cutoff to k.

To simplify the analysis, we rely on the following assumption throughout the paper.

9In centralized assignment systems, a change in one school’s choice function in the deferred acceptance al-
gorithm may generate a sequence of rejections and proposals, which might result in ambiguous overall effects
across schools. Kominers and Sénmez (2016) and Dur et al. (2016) present examples of this phenomenon. When
a matching model includes a large number of participants, there are empirical and theoretical arguments (e.g.,
Roth and Peranson (1999) and Kojima and Pathak (2009)), suggesting that such sequences of rejections and
proposals are rare.



Assumption 1 (Oversubscription): For eacht € T,

This assumption states that for each tier ¢, the mass of tier ¢ students is at least as great as the

mass of slots they are competing for.

2.2 Choice Function

A choice function formally specifies the set of selected students from any given set of applicants at
a given schools. To define the choice function, it is necessary to specify how slots are processed.
The slots in S are processed according to a linear order > on .S, that we refer to as a precedence.
Given two slots s,s’ € S, the expression s> s means that slot s is to be filled before slot s
whenever possible. We say that s precedes s’ or s is processed before s’. The precedence rank
of a slot is the number of slots that precede it plus one. We say s is the /" (merit) slot if the
number of (merit) slots preceding it is £—1. We say a pair of merit slots s, s’ € S, are subsequent
if there does not exist another merit slot § € S,, such that s> &> s’. Similarly, we say a pair of
tier slots s,s" € S\ Sy, are subsequent if there does not exist another tier slot § € S'\ S, such
that s> 5> 5.

The choice function depends on the set of slots, the types of these slots, and their precedence.
Therefore, when describing a choice function, there are three inputs: the set of slots S, the 7
function that specifies the types of these slots, and the linear order > that specifies the precedence
of these slots. For a given triple (S, 7,>), the choice from a set of students J is denoted by
C(S,7,>,J). Throughout the analysis, the set of slots S is fixed. Moreover, with the exception
of Section 3.2, the function 7 is fixed. Therefore, we drop S and 7 as arguments of the choice
function, referring to choice as C'(>, J), except in Section 3.2.

Construction of C (>, J): For a given triple (S, 7,>) and set of students J, the choice C(>, J)
will be constructed as follows: Each slot will be filled in order of precedence > given the criteria
described above. That is, when it is the turn of a merit slot, it will be filled with the highest-
scoring unit mass subset of applicants that are so far unchosen. When it is the turn of a tier ¢
slot, it will be filled with the highest-scoring unit mass subset of applicants from tier ¢ that are

so far unchosen.

Under Assumption 1, for any tier ¢, there are more tier ¢ applicants than the mass of slots

they are competing for. Therefore, all tier ¢ slots will be filled by tier ¢ candidates.



3 Explicit Targeting

3.1 The Best and Worst Precedence for a Given Tier

Affirmative action schemes are designed to favor applicants from particular tiers. To have the
greatest representation from a particular tier, it is of course possible to only admit applicants from
that tier. However, as discussed in the introduction, this policy conflicts with the competing goals
of exam school admissions of both grouping together the highest achievers and having diversity.
Moreover, a policy that only admits applicants from one tier is not tier-blind, as we more formally
describe below. We therefore hold the fraction of reserved seats from each tier fixed at equal
sizes and characterize the precedence policies that explicitly target the greatest and lowest
representation for a given tier.

A preliminary structural result provides a convenient simplification for describing precedence
orders. To determine the outcome of a given choice function, we will show that it is sufficient to
specify the number of slots from each tier between any two subsequent merit slots and not their
exact location relative to one another. To express this formally, we first define what it means for

two precedences to be equivalent.

Definition 1 For a given set of slots S and their types T, the precedence > is equivalent to
precedence > if precedence > can be obtained from precedence > by a sequence of swaps of the
precedence ranks of any pair of tier slots s, s’ € S\S,, where there is no merit slot s,, such that

S Sy > S

Equivalence of two precedences simply means that
1. they have the same number of merit slots with identical precedence ranks, and

2. for any given tier ¢, the number of tier t slots between any two subsequent merit slots is
identical under both precedences, as is the number of tier ¢ slots before the first merit slot

and the number of tier ¢ slots after the last merit slot.

The next lemma justifies this equivalence terminology.

Lemma 1 Fiz the set of slots S and their types 7. Let > and © be two equivalent precedences.

Under Assumption 1,
C,I)=CB,1).

The proof of this and all other results in contained in the appendix.
The maximal tier ¢ assignment is when the mass of assignment which is (weakly) greater
than the mass of all possible tier ¢ assignments. The minimal tier ¢ assignment is when the

mass of assignment which is (weakly) smaller than the mass of all possible tier ¢ assignments for



applicants of a given tier. Our first main result characterizes the precedence orders that attain
the maximal and minimal mass of assignments '° The statement of this result is simplified,

thanks to Lemma 1.

Proposition 1 Fiz the set of slots S, their types T, and tier t* € T.

o Let > be a precedence order where each slot of each tier t # t* precedes each merit slot and

each merit slot precedes each slot of tier t*.

o Let > be a precedence order where each slot of each tier t* precedes each merit slot and each

merit slot precede each slot of any tier t # t*.
Then under Assumption 1, among all precedence orders,
i) the mazimal tier t* assignment is attained under >,

i) the minimal tier t* assignment is attained under .

While this statement sounds intuitive, its proof requires understanding the implications of a
carefully constructed sequence of swaps in the precedence order between merit slots, tier t* slots,
and tier ¢t # t* slots. In the proof, we take an arbitrary precedence and apply this sequence of
swaps to arrive at the desired conclusion for part i). The spirit of the argument for part ii) is
similar, even though the sequence of swaps is not. The figures in the proof shown in the appendix
provide an illustration for the case of four tiers.

An important issue with the precedence order > which maximizes representation of tier t*
applicants is that it tweaks the competition for merit seats to the benefit of applicants from tier
t* by dropping the best applicants from other tiers from competition. In contrast, the precedence
order > is the other extreme that tweaks the competition for merit slots to the detriment of tier ¢*
applicants. Hence, this proposition raises the question of whether either of these two precedences

can be considered “equitable,” despite the identical number of tier slots.

3.2 Eliminating Explicit Targeting

For a given set of equally-sized reserve slots, Proposition 1 characterizes the precedence policy
that has the greatest and lowest representation for a particular tier. That tier either receives
favorable or unfavorable treatment for the competition at merit slots under these two policy
extremes. In our view, the biased competition for merit slots due to these precedences is akin
to the more visible bias associated with uneven tier reserve sizes. As such, we would like to

eliminate uneven treatment of different tiers due to either visible or subtle design parameters.

1071 the appendix, we show a somewhat stronger result that the set of tier t* students chosen by the choice
function induced by 5 includes the set of tier t* students chosen under any other precedence 1>, and the set of tier
t* students chosen under any other precedence > includes the set of tier t* students chosen by the choice function
induced by .



We therefore focus on the class of rules that do not explicitly target applicants by differentiating
across tiers.

Explicit targeting across tiers will be eliminated only when the label of tiers play no role
in the choice function. This idea motivates the following definition of tier-blindness. A merit-
preserving bijection 7 : TU{m} — TU{m} is a one-to-one and onto function where w(m) = m.

This bijection simply relabels the tiers.

Definition 2 A precedence > is tier-blind if and only if for any set of slots S, for any type

function T, for any merit-preserving bijection w, and for any group of students J,
C(S,T,D, J) = C(S,TF(T),D, J).

This definition simply states that relabeling tiers does not change the outcome.

Tier-blindness is an anonymity condition across tiers, and it restricts the structure of prece-

dence orders. We next identify the mechanical structure implied by tier-blindness.

Definition 3 Precedence > is balanced if for any two tiers t,t' € T':

i) there is an equal number of tier slots for tiers t and t' between any two subsequent merit

slots,
ii) there is an equal number of tier slots for tiers t and t' before the first merit slot, and

iii) there is an equal number of tier slots for tiers t and t' after the last merit slot.

Due to Lemma 1, the relative position of tier slots between any pair of subsequent merit slots is
immaterial.

Precedence orders characterized in Proposition 1 are clearly not balanced. To give some
examples of balanced precedence orders, let us suppose that there are two tiers and denote
generic slots for tier 1 as s; and generic slots for tier 2 as so. In this environment, the following

three precedences are all balanced:

1) 81> 82> 82> 81> Sy > S,
—_———

# tier 1=#ttier 2

2) Sm > Sm > Sm > S1 > 81> 81> S2 >S9 b S,

# tier 1=+ttier 2

3) $1>8a> 8>S Sy >8I >8> Sa> S 81 >S9 Sy S > S > S2 > So > §1 D S7.
—_—— —_———

# tier 1=+ttier 2 # tier 1=+#ttier 2 # tier 1=+#tier 2

Our next result shows that tier-blindness and balancedness are equivalent.

Proposition 2 Fiz the set of slots S and their types 7. Under Assumption 1, a precedence order

1s tier-blind if and only if it is balanced.

10



This proposition implies that under tier-blindness, there must be the same number of slots for
each tier. Given an equal fraction of reserved seats for each tier, there are still many precedence
orders that are tier-blind, but they may differ in how they distribute access to students from
different tiers. How these tier-blind admission policies distribute access is a consequence of the

statistical properties of score distributions across tiers, an issue we examine next.

4 Statistical Targeting

4.1 The Best and Worst Tier-Blind Precedence

In the last section, we showed that there are many possible tier-blind admissions policies, which
by definition do not explicit target a given tier. Within this class, however, policies may lead to
substantially different access across tiers due to the distribution of scores across tiers. Statistical
targeting, one of the central concepts we formulate in our paper, involves choosing a policy
among tier-blind precedence policies with the potential objective of optimizing the number of
seats assigned to students of a specific tier, utilizing the differences between the distribution of
scores across tiers.

Unlike explicit targeting, which is easier-to-understand, the implications of statistical target-
ing are not as straightforward. The effects of this aspect of affirmative action policies may be
as large as other more explicit policy levers. It is, therefore, important to understand statistical
targeting to avoid unintentionally favoring certain groups. Some policymakers may find this
more subtle policy lever easier to navigate since reaching desired outcomes might not create a
visible wedge between different groups. We caution that policies critically relying on statistical
targeting may be prone to abuse without the benefit of full transparency.

Without additional structure on the problem, it is not possible to differentiate between ap-
plicants of different tiers under a tier-blind precedence by the very nature of this concept. The
following empirically-motivated condition on the distribution on scores allows us to characterize

the best tier-blind precedence for the lowest socioeconomic tier.
Assumption 2 fi(k) > fi(k), Vk € K and VteT.

Assumption 2 states that for any given score, tier 1 students have the lowest representation
compared to all other tiers. For notational convenience, we state this assumption for all scores
in K, but it only needs to hold for all “sufficiently high” scores within the relevant range where
applicants may be admitted. While this assumption appears strong, we will show in Section 5
that the score disadvantage of tier 1 students holds for applicants at the majority of schools in

Chicago.'! We are now ready to state our main result:

"In Appendix A.7, we show that a weaker assumption that the cumulative score distribution of tier t + 1
first-order stochastically dominates the cumulative score distribution of tier ¢ for all ¢ is not sufficient for Theorem
1 and Proposition 3.

11



Theorem 1 Fix the set of slots S and their types 7. Under Assumptions 1 and 2, among tier-

blind precedence orders,
i) the mazimal tier 1 assignment is attained when all merit slots precede all tier slots, and

ii) the minimal tier 1 assignment is attained when all tier slots precede all merit slots.

Under Assumption 2, at any given score, there is lower representation of tier 1 applicants
compared to other tiers. When an even share of reserve slots across tiers are filled before merit
slots, the gap at the upper tail of the score distribution widens between tiers. As such, the larger
the share of reserve slots that are processed prior to merit seats, the lower is the access for tier
1 applicants for merit slots. Hence, maximal access is attained when all merit slots precede tier
slots, just as minimal access is attained when all tier slots precede merit slots.

How do applicants from the highest tier fare under these admissions policies? To answer this
question, it is necessary to specify how scores from highest tier compares with those of other

tiers. The following assumption is the mirror image of Assumption 2.
Assumption 3 fi(k) > fi(k), Vk € K and VteT.

Assumption 3 states that for any given score, there is higher representation of tier ¢ students
compared to all other tiers. As with Assumption 2, we state this assumption for all scores K, but
it only needs to hold for all scores within the relevant range where applicants may be admitted,
and return to discuss this assumption in Section 5.

Our next result shows that under Assumption 3, there is a clear conflict of interest between

the highest and lowest tier under our specified precedence policies.

Proposition 3 Fiz the set of slots S and their types 7. Under Assumptions 1 and 3, among

tier-blind precedence orders,
i) the mazimal tier t assignment is attained when all tier slots precede all merit slots, and

ii) the minimal tier t assignment is attained when all merit slots precede all tier slots.

This result is the symmetric counterpart to Theorem 1, but for the highest socioeconomic
tier. Theorem 1 and Proposition 3 show that the tier-blind policy that maximizes representation
of the lowest tier minimizes representation of the highest tier, and vice versa. In Section 5, we
report the difference in access across tiers between the best and worst tier-blind precedence for
each school. We show that the difference between the best and worst precedence policies even
among tier-blind policies can be substantial.

When Chicago Public Schools launched the tier-based affirmative action system in 2009, the

system adopted a precedence where all merit slots precede all tier slots. We denote this as the
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CPS precedence. Given a reservation size and tier-blindness, Theorem 1 and Proposition 3
imply that the CPS precedence is the best policy for tier 1 applicants and the worst policy for
tier 4 applicants. That is, given Chicago’s tier reserves, our results show that Chicago’s policy
is biased in favor of applicants from the most disadvantaged neighborhoods at the expense of

applicants from the most advantaged neighborhoods, even though it is tier-blind.

4.2 Increasing the Size of Reservations

In the 2011-12 school year, Chicago Public Schools increased the size of tier reservations from
60% to 70%. That is, the share of tier slots increased from 15% to 17.5% for each tier. This
change was made at the urging of a Blue Ribbon Commission (BRC 2011), which examined the
racial makeup of schools under the 60% reservation compared to the old Chicago’s old system of

racial quotas. They advocated for the increase in tier reservations on the basis it would be

improving the chances for students in neighborhoods with low performing schools, in-

creasing diversity, and complementing the other variables.

Our next result shows that under the CPS precedence, increasing the size of reservations
results in greater access for the lowest tier students, but diminishes access for the highest tier

students.

Proposition 4 Under the CPS precedence, and Assumptions 1-3, an equal sized increase in the

number of tier slots,
i) weakly increases the mass of tier 1 assignment and

i) weakly decreases the mass of tier t assignment.

The intuition for Proposition 4 is simple. Under Assumption 2, higher tier students on
average have higher scores than tier 1 students. Therefore, tier 1 students have less to lose from
a reduction in the share of merit seats compared to other tiers. In contrast, under Assumption
3, tier ¢ students have on average higher scores than other tiers, and as such, they have more to
lose from a reduction in the share of merit seats.

Proposition 4 together with Theorem 1 imply that the best tier-blind rule for tier 1 students
is equal-size reserves with no merit seats. That is, in the case of Chicago with four tiers, the best
tier-blind precedence policy is a 25% reservation for each tier and, thus, no merit slots. Indeed,
in the policy discussion about modifying the plan, some advocated for the complete elimination

of merit seats and equal-sized shares for each tier (see, e.g., BRC (2011)).
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4.3 Comparing Two Extreme Precedence Orders

The tier-blind precedence orders that maximize either tier 1 or tier ¢ assignment are extremal:
under Assumptions 2 and 3, either all merit slots precede all tier slots or all tier slots precede
merit slots.

The two extreme precedence orders also play an important role in Indian affirmative action
systems used for government positions and seats at public schools. The precedence where all merit
slots precede all reserve (i.e. tier) slots is known as a vertical reservation. Vertical reservations are
considered a higher-level reservation and are exclusively intended for historically discriminated
classes of people such as Scheduled Clans, Scheduled Tribes, and Other Backward Classes. The
precedence where all reserve slots precede all merit slots is known as a horizontal reservation.
Horizontal reservations are considered lower-level reservations and are intended for other groups
of disadvantaged citizens such as women or the disabled (Sénmez and Yenmez 2019a, Sonmez
and Yenmez 2019b).

In this subsection, we investigate the performance of these two extreme precedence orders

when we relax Assumptions 2 and 3. We first state the weaker form of Assumption 2.

Assumption 4 For all k € K,

Assumption 4 states that for each score k € K, the average representation of all other tier
students is weakly more than the representation of tier 1 students. It is easy to verify Assumption
2 implies this assumption, but not vice versa. Our next result compares extreme precedence

orders under this assumption.

Proposition 5 Fiz the set of slots S and their types T. Let > and >’ be tier-blind precedence

orders in which merit slots precede tier slots and tier slots precede merit slots, respectively. Under
Assumptions 1 and 4, C1(>,I) D C1(v', ).

Proposition 5 states that, under Assumptions 1 and 4, when all merit slots precede all tier
slots, there is higher tier 1 assignment compared to the one when all tier slots precede all merit
slots. Appendix A.7 shows that we do not obtain a version of Proposition 5 for tier £ under the

counterpart of Assumption 4 for tier ¢.

5 Evidence from Affirmative Action in Chicago

5.1 Modeling Assumptions

In this section, we investigate the extent to which our theoretical results provide insights about

Chicago’s affirmative action system and quantify how the precedence affects the allocation of
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students from different tiers to particular schools. Our data consists of application files from
Chicago Public Schools for the 2012-2013 school year, and contain student rankings, tier, and
composite scores. Students submit their rankings after knowing their composite score. A total
of 16,818 applicants ranked schools, with 3,876 from tier 1, 4,292 from tier 2, 4,648 from tier 3,
and 4,002 from tier 4. There are ten schools with a total of 4,025 seats.

In 2012-13, CPS used six factors to place neighborhoods into tiers: (1) median family income,
(2) percentage of single-parent households, (3) percentage of households where English is not the
first language, (4) percentage of homes occupied by the homeowner, (5) level of adult education
attainment, and (6) average ISAT scores for attendance area schools. Based on these factors,
each census tract was given a score, scores were ranked, and then census tracts were divided into
four groups, each with approximately the same number of school-age children. Tier 1 tracts have
the lowest socioeconomic index, while tier 4 tracts have the highest socioeconomic index. At
each school, for 30% of the seats, the admissions criteria was merit-based using composite scores.
The remaining 70% of the seats were divided into four equally-sized reserves, one for each tier.
At each 17.5% reserve for a given tier, the admissions criteria was merit-based within that tier.
Students could rank up to six choices, and applications were processed via the student-proposing
deferred acceptance (DA) algorithm using the CPS precedence.

Chicago’s affirmative action system differs from our model in one important way. We’ve
focused on the properties of one school’s choice function, but CPS uses DA to assign ten schools.
This fact raises the question of how best to interpret our modeling assumptions using data
from a centralized match. As we mentioned before, DA can be interpreted as the iterated
application of choice functions across all schools, where in the first iteration students apply to
their top choices and in each subsequent iteration, students rejected in earlier iterations apply
to their next choices. Under DA, it is sufficient to look at the cumulative set of proposals
to a school during the algorithm to determine who is assigned to that school. Indeed, this
property motivated Hatfield and Milgrom (2005) to define DA as the “cumulative offer” algorithm.
Consequently, we investigate our three assumptions by considering the set of applicants who are
subject to each school’s choice function — that is, those who apply to that school during CPS’s
DA implementation.!?

There is strong support for Assumption 1, which states that there are more tier ¢ students
than the number of tier ¢ and merit slots at a school for any ¢. For each of the ten schools,
the number of applicants from each tier is greater than the number of merit slots and slots
reserved for that tier. In most cases, the number of applicants is far greater than the number
of slots. For instance at Payton, the most competitive school, there are 2,091 applicants from
tier 4 competing for 106 seats and the ratio of applicants to seats is similar for the other three
tiers. Tier 4 applicants are less interested in schools with lower admissions cutoffs. At King, the

number of tier 4 applicants is only about double the number of seats for which they compete.

12This set of application is identical to the “sharp sample” defined in Abdulkadiroglu, Angrist and Pathak
(2014).
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Moreover, at less competitive schools, the composition of applicants includes a larger share from
lower tiers than higher tiers. At both King and South Shore, there are nearly three times as
many applicants from tier 1 than tier 4.13

There is also strong support for Assumption 2, which states that tier 1 students have lower
scores compared to all other tiers at each point over a relevant range. For each tier, Figure 1
plots a smoothed estimate of the score distribution for each school ordered by merit cutoff.!4
The tier 1 line is below the corresponding lines for each other tier at nine schools, when we
define the relevant range as scores above the cutoff for merit seats. Since this cutoff will likely
be high when merit slots are processed first, it is also worth examining a more conservative
definition of the relative range as scores greater than the minimum score needed to qualify for
a tier seat. This is a conservative assumption because under the CPS precedence, the lowest
scoring applicant from a given tier may have a score well below what is needed to obtain a
merit seat. In such a case, applicants with scores near this threshold are unlikely to influence
the competition for merit seats under different precedence orders. For the more conservative
definition, the tier 1 line is below the other lines for the six most competitive schools. For these
six schools, we therefore expect a close match between the best and worst tier-blind precedence
computed in Theorem 1 and the Chicago data. For the other four schools, tier 1 applicants score
systematically lower than applicants from other tiers, even though Assumption 2 is not exactly
satisfied. Since Assumption 2 is sufficient, but not necessary, it is still possible that the optimal
tier-blind precedences calculated in Theorem 1 account for empirical patterns at these schools.
It’s worth noting that the weaker Assumption 4 is satisfied at two of these four schools using the
conservative definition of the relevant range (show in Figure B1).

For the most competitive schools, there is strong support for Assumption 3, which states that
tier 4 students have higher scores compared to the other tiers. If the relevant range starts from
the minimum score needed to qualify, the tier 4 line is above the lines from other tiers for the five
most competitive schools. If the relevant range starts from the minimum score needed to qualify
for a merit seat, the tier 4 line is also above all the other lines at Westinghouse. Proposition 3

is, therefore, likely most relevant for these schools.
5.2 Comparing Alternative Affirmative Action Policies

The Best and Worst Precedence for Tier 1 under 30% Merit

Figure 2 reports the fraction of seats assigned to tier 1 students under the best and worst policy
and the best and worst tier-blind policy for tier 1 applicants, when 30% of seats are reserved

for merit. We compute these policies by re-running DA for the difference precedence orderings

13South Shore is a new school that opened in 2012-13 and therefore may have experienced unusually low demand
in its initial year.

148ince scores are discrete, we report a local linear smoother with bin size of 0.5 using STATA’s lowess command.
Scores range from 0 to 900, but we plot the range above 600 since no applicants below that score are admitted.
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holding the submitted ranking fixed.'® The figure tabulates the fraction of seats assigned to tier
1 students across all schools and then reports a breakdown by school, where schools are ordered
from left to right by selectivity. At Payton, for instance, the cutoff for tier 1 seats is 801, while
the cutoff for tier 4 seats is 892. Since merit seats precede tier seats under the CPS precedence,
the merit cutoff is even higher at 898. At Northside and Young, there is also a roughly 100 point
gap between the score of the last admitted tier 4 and tier 1 applicant at their respective tier
seats. To obtain a merit seat at either school, an applicant must have nearly a perfect score (897
and 886, respectively). South Shore and King are the least competitive schools, both with tier 1
cutoffs of 650 and merit cutoffs of 704 and 714, respectively.

Across all schools, an additional 124 tier 1 students are assigned under the best tier 1 prece-
dence compared to the best tier-blind precedence for tier 1. This comparison can be seen by
comparing columns 1 and 2 of Figure 1 and recalling that a total of 4,025 students are assigned.
It’s worth noting that for a single school’s choice function, Lemma 1 implies that it is not neces-
sary to specify the ordering of the tier seats that precede the merit seats. We therefore report the
allocation generated by precedence Tier2-Tier3-Tierd-Merit-Tier 1 in the first column. Under
the best policy for tier 1 applicants, a total of 875 tier 1 applicants are assigned to any school,
so the reduction in the number of tier 1 students assigned due to tier-blindness, the “cost of
tier-blindness,” of 124 students is substantial.

For particular schools, the cost of tier-blindness depends on school selectivity. At the most
competitive schools, the reduction in how many tier 1 applicants are assigned in the best tier-
blind policy is small. At Payton, one fewer tier 1 student is assigned in the best tier-blind
policy. At Northside, four fewer tier 1 students are assigned in the best tier-blind policy. There
is a substantial difference, however, at somewhat less competitive schools. At Westinghouse,
33 fewer students are assigned under the best tier-blind policy for tier 1. Figure 1 shows that
there are more high-scoring applicants from higher tiers at score ranges needed to qualify for the
most competitive schools. The difference in scores across tiers narrows at score ranges needed
to qualify for less competitive schools. At the most competitive schools, almost all of the merit
seats are allocated to students from tiers other than tier 1, leaving little room for precedence to
influence the applicant pool at merit seats. At less competitive schools, the impact of precedence
is larger because the competition for merit seats across tiers is more even.

The range of outcomes from the best and worst tier-blind policy shows the potential scope
for statistical targeting. This range can be seen by comparing the second and third columns
of Figure 2, which are the best and worst tier-blind precedence for tier 1. A total of 39 fewer
tier 1 students are assigned in worst tier-blind policy compared to the best tier-blind policy for
tier 1. For particular schools, statistical targeting allows for a smaller range of outcomes at

more selective schools. At Payton, there is no difference for tier 1 applicants. At Northside, the

15Since applicants are allowed to rank at most six choices in the CPS mechanisms, their implementation of
DA is not strategy-proof. However, we think treating the stated preferences as fixed across these simulations is a
reasonable assumption.
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tier-blind range is 3 students, and at Young, it is 1 student. At the other extreme, the largest
range is at Westinghouse and Lindblom, where 8 more tier 1 students could be assigned to each
school in the best tier-blind policy for tier 1 compared to the worst one.

While there is a substantial gap between the best policy for tier 1 and the best tier-blind
policy, there is almost no difference between the worst policy for tier and the worst tier-blind
policy. This fact can be seen by comparing the third and fourth columns of Figure 2. Only three
fewer students are assigned in the worst policy for tier 1 compared to the worst tier-blind policy
for tier 1. The outcome is the same at 17.5% for all schools, except South Shore and King. This
means that tier 1 students are essentially shut out entirely from merit seats under these two

worst precedence policies.

The Best and Worst Precedence for Tier 1 under 40% Merit

Our theoretical analysis studied how precedence policies influence the competition for merit
seats. When the share of merit seats increases to 40%, precedence has a larger effect on the
allocation of tier 1 applicants. This can be seen in Figure 3, where we tabulate the outcome
of the four precedence policies in Figure 2, but for 40% merit. As described above, the initial
CPS affirmative action system was launched with 40% merit, but it switched to 30% in 2010-
2011. The figure shows that for all schools, the gap between the best and worst policy for tier 1
applicants is at least as large when 40% of seats are assigned via merit compared to 30%. This
fact can be seen by comparing the first and fourth columns of Figures 2 and 3. At most schools,
the scope for statistical targeting is also larger with more merit seats. This fact can be seen by
comparing the second and third columns of Figure 3 with the corresponding columns of Figure
2.

Figure 3 shows that the King does not follow the pattern predicted by our theoretical results
when 40% of seats are assigned via merit. Fewer tier 1 students are assigned to King compared
to the worst tier-blind policy for tier 1. This discrepancy is not inconsistent with our theoretical
results given that Assumption 2 fails in a significant part of the potentially relevant score range
at King.

Are the differences between precedence policies quantitatively large or small? Recall that
a Blue Ribbon Commission reviewing Chicago’s policy made the controversial recommendation
to decrease the merit percentage from 40% to 30%. Under the CPS precedence, 63 more tier
1 students are assigned to an exam school when the merit percentage is 30%. Had CPS not
decreased the merit percentage, 118 more students would be assigned in the best tier 1 precedence
compared to the CPS precedence. Therefore, it would have been possible to hold the merit
fraction fixed and increase access for tier 1 applicants simply by changing the precedence order.
This comparison involves explicit preferential treat tier 1 applicants. When 40% of seats are

merit, 34 more tier 1 students are assigned under the CPS precedence compared to the worst
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tier-blind policy for tier 1.1 Even relative to the more salient tool of decreasing merit seats,
the scope for statistical targeting is more than half the effect of changing the merit fraction.
Given the policy review and debate leading to the adoption of the 30% merit reservation, these

magnitudes suggest that precedence is far from a trivial consideration.

6 Conclusion

Chicago Public Schools has adopted a landmark placed-based affirmative action system for as-
signment to its highly sought-after exam schools. They key feature of that system that we study
is that an applicant can be assigned to more than one type of seat. Though we have focused on
Chicago, many other affirmative action systems provide affirmative action to multiple categories
of applicants, and allow these applicants to be assigned to multiple types of seats. This aspect of
admissions motivated our investigation of how applicant processing affects the implementation
of affirmative action.

We have shown that it is not sufficient to specify that reserves are equally sized to eliminate
explicit targeting. Moreover, even in systems without explicit targeting, there are many possible
implementations of affirmative action driven by statistical differences in scores by applicant tier,
due to statistical targeting. For applicants from a given tier, our formal results characterize the
precedence policy that maximizes and minimizes access for a given reserve size. After formu-
lating a notion of tier-blindness, we also characterize tier-blind precedence that maximizes and
minimizes access for the most disadvantaged applicants. Our results imply that CPS’s current
policy has been favoring the most disadvantaged applicants. We also show that the bias in favor
of applicants from the most disadvantaged tier is comparable to the outright increase in the size
of tier reservations in 2012.

This paper contributes to a new focus in the analysis of priority-based resource allocation
problems like student assignment. A large portion of that literature has taken the social objectives
embodied in the priorities as given and then examined the properties of different market-clearing
mechanisms. This paper, like Echenique and Yenmez (2015), focuses on how various social
objectives are captured by a school’s choice function. Though we have focused much of our
discussion on Chicago, our optimality results provide a new instrument to implement diversity
goals in other hybrid situations with open and reserve competition with multiple reserve groups.
If the goal is to maximize representation from particular groups in a neutral way subject to legal
and political constraints, our results can be used to justify particular precedence policies. The
results also open the door to favoring certain reserve groups, even when constraints mandate

that reserve group sizes are identical.

!The range between the best and worst tier-blind precedence for tier 1 with 40% merit is smaller than the
range with 30% merit, where it is 39 students, because of King. Ignoring assignments at King, the range is larger
when the merit share is 40%. Excluding King, 51 more tier 1 applicants are assigned under the best tier-blind
precedence for tier 1 compared to the worst tier-blind policy for tier 1 under 40% merit, and the comparable range
is 35 under 30% merit.
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Figure 1(a): Distribution of Composite Scores for Each Tier.
Score distribution shown for applicants who apply to school during course of mechanism. Dashed vertical line indicates
minimum score to be offered a seat while solid vertical line indicates minimum score to be offered a merit seat under CPS
precedence. Lines from local linear smoother (lowess) with bin size of 1.



Westinghouse

Lindblom

~ | 680 773 e 770
|
|
|
| ™~ -
@ |
|
|
| © |
> | > |
3 3 |
C C
g | El !
= B
2 | 2 |
w w = o |
| t
| |
- I I
T w |
| - | \
| |
| |
| |
o | o |
| |
T T T T T T T T T T T T T T
600 650 700 750 800 850 900 600 650 700 750 800 850 900
Points Points
King South Shore
w
o 1850 714 704
|
|
|
=0 I |
|
|
- I
2 >
[T | Q
5 5
£ E
o | o
(2 | i
w o~~~ | w
L
|
|
<8 |
|
‘ g_
|
o ! e _—
600 650 700 750 800 850 900 700 750 800 850 900
Points Points

Tier 1
Tier 3

Tier 2
Tier 4

Figure 1(b): Distribution of Composite Scores for Each Tier
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A Appendix

We begin by introducing some additional notation. We fix the set of slots .S and type function
7. We denote the set of students chosen for slot s € S by choice function C(-) from set J under
precedence order > with Cs(>, J). Similarly, we denote the set of tier ¢ students in C(>, J) with
C!(>,J) and the set of tier ¢ students in Cs(>, J) as CL(>, J).

For our analysis below, it is convenient to define tier and merit slot groups:

Definition 4 Given S, T and >, a subset of tier slots G C S\ Sy, is called a tier slot group if

it consists of either
i) all tier slots that have higher precedence than the highest precedence merit slot, or
i) all tier slots that have lower precedence than the lowest precedence merit slot, or

ii1) all tier slots between any subsequent merit slots.

Definition 5 Given S, 7 and >, a subset of merit slots H C Sy, is called an merit slot group

if it consists of either
i) all merit slots that have higher precedence than the highest precedence tier slot, or
ii) all merit slots that have lower precedence than the lowest precedence tier slot, or

ii1) all merit slots between any subsequent tier slots.

We begin with a preliminary Lemma that shows that comparing the set of chosen students by

two choice functions is equivalent to comparing the size of the two chosen sets.

Lemma 2 Fiz the set of slots S and their types . Let > and > be two precedence orders. Then,
foranyteT,
|ICt (>, )| < |CH(, I)| <= C'(>, 1) C O, ).

Proof. Fix a tier t € T. Observe that for any precedence order, if any student ¢ of tier ¢ is
chosen under the choice function C(.) then all students of tier ¢ with higher composite scores
than student ¢ are chosen under the choice function C(.). This observation immediately implies
the desired result. OJ

Next, we state a lemma that is used in the proofs of Theorem 1 and Propositions 1 and 3.

Lemma 3 Fiz the set of slots S and their types 7. Partition S into three sets S', S?, and S>

such that there are no merit slots in S°. Let > be a precedence order such that
sty §2p §° for all s* € S, s? € 82, and s® € S3.
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Let v’ be another precedence order that differs from > only in the precedence rankings of slots in
S2. Under Assumption 1, for allt € T,

Cl'e, 1) CC'(Y, 1) <= | Clee, 1) C | i, D).
s€S2 €52

Proof. Each slot in S! not only has the same precedence ranking in > and >/, but is also
processed before slots in S? U S3. Therefore, for all t € T,

U cie,n = | ¢l ).

sest seSt
This equality directly implies that,
U cien| =] U cie.n)
seSt seSt

Moreover, since there are no merit slots in S3, for all t € T,
U cten| =] U cietn| =1s*ns
s€s3 EISE
by Assumption 1. Therefore for all t € T,
Ucten|<|Uce.n| =] U cen|<| U e |
ses seS €852 €82

Hence Lemma 2 implies, for all t € T,

C'e, 1) C C'(¥, 1) <= | Cie, 1) C | i, D).
s€52 s€52

A.1 Proof of Lemma 1

We use the following result to prove Lemma 1 in the main text.

Lemma 4 Fix the set of slots S and their types 7. Let > be a precedence order in which a tier
slot 3 immediately precedes another tier slot s'. Let ' be a precedence order obtained from 5
by swapping the precedence ranks of § and s' and leaving the precedence ranks of all other slots
unchanged. Under Assumption 1, C(5,1) = C(',I).

Proof. Let § be the h" slot under &. Consider the outcome of choice function C(-) under
problems (5,I) and (>/,I). Since the first (h — 1) slots are the same under both & and >/,
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Cs(, 1) = Cs(>/, 1) for all s € S with s & § (and, therefore s ' s'). Hence, the same subset
of students, denoted by I’, is available to be selected for the h*" slot by choice function C(-) in
both problems (5,1) and (>',I). If §,s" € S; for some ¢t € T, then the highest-scoring two unit
masses of tier ¢ applicants in I’ are selected both for § and s’ by C(-) under both & and v/. If
5 € S;and s € Sy where t # t', then, in both problems C(-) selects the highest-scoring unit
mass of tier ¢ applicants in I’ and the highest-scoring unit mass of tier ¢’ applicants in I’ for §

and s’, respectively. Hence, in both cases
Cg(lg, I) U CS/(IS,]) = Cg(D/,I) @) CSI(D/,]),

and the same subset of students is available to be selected for the (h+4-2)*" slot by C(-) under both
& and »’. Since the last (|S| —h — 1) slots are the same under both 5 and >/, Cs(5,1) = Cs(>, I)

for all s € S with s’ & s (and, therefore § > s). Hence,
e, n =], 1.
ses s€S

O

Proof of Lemma 1. Since any equivalent precedence order of > can be obtained from consecutive

swapping the ranks of the adjacent tier slots, Lemma 4 implies the desired result. O

A.2 Proof of Proposition 1

We use the following remark and Lemmata to prove Proposition 1. We skip the proof of the

following remark for brevity.

Remark 1 Fiz the set of slots S and their types 7. Let > and >’ be precedence orders over S
such that the h*"* slots under > and >’ have the same type for all h € {1,2, ...,|S|}. Then, for any
subset of students J C I, C(>,J) =C(®,J).

Lemma 5 Fiz the set of slots S, their types T, and tier t* € T such that S includes only merit
and tier t* slots under 7. Let > be the precedence order over S such that merit slots precede
all tier t* slots and > be the precedence order over S such that all tier t* slots precede all merit
slots.'” Then, for any given J C I with nl. > |Sp| + |Si| = |5,

(i) C*(5,7) € C" (>, J),
(ii) C*(>,J) C C¥(5,J) for allt € T\ {t*}.

Proof. With slight abuse of notation, let C,, (>, J) and Cy, (5, J) be the set of students selected
for the merit slots from J by C(-) under > and &, respectively. Since nj. > |S], all slots are filled

17See Figure A.1 for examples of > and 5.
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and tier ¢t € T'\ {t*} students are only selected for merit slots by C(-) under > and 5. Hence, it
suffices to show that C?, (>, J) C CL (5,J) for all t € T\ {t*}.

Figure A.1: Illustration of precedence orders > and &

We denote the infimum scores of students in C, (1>, J) and Cyy, (5, .J) with £, and £,,, respec-
tively. Since the merit slots are filled first under > and the tier slots are filled first under &, we

have

t:lém

ik ik
S [ 7wk =150 =3 [ 7 wjar )
=1
Equation (3) implies that £, > £,,. For each t € T'\ {t*}, if i € C (>, J), then k(i) >y > I,
and hence i € C! (5,J). That is, C% (>, J) C C! (5,J) for all t € T'\ {t*}, and therefore
Ch(5,J) C Ch (e, J).
Since all tier t* slots are filled with tier t* students,
chE,J)CcChe,J) = C"(E,J)CC (b))
Similarly, for any ¢ € T\ {t*},

ct (>, J)CCl(3,J) = C',J)CCE,J).

Lemma 6 Fiz the set of slots S, their types T, and tier t' € T such that S includes at least
two merit slots under 7. Let Sy, be partitioned into two non-empty subsets, St and S2,. Let >
be a precedence order over S such that merit slots in Sk precede all tier slots and all tier slots
precede the merit slots in S2,. Let & be a precedence order over S such that all tiert € T\ {t'}
slots precede the merit slots and merit slots precede the tier t' slots. Then, for any J C I with
n{ > S| + S| for allt € T,

(>, J) C O (5, J).

Proof. We first consider precedence order . When we move tier ¢’ slots within the tier slot

group such that they are preceded by all other tier slots, by Lemma 1 the mass of tier ¢’ students
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Figure A.2: Illustration of precedence orders >, 5, and &

selected from J by choice function C(+) does not change. Then, when we move tier ¢’ slots after
the merit slot group S2,, by Lemma 5.(i) the mass of tier ¢’ students selected from J by choice
18 Let & denote the precedence order obtained from > by these
moves." Then, C* (>,.J) C C¥'(8,.J). It therefore suffices to show that C¥ (5, .J) C C¥ (5, J).

Under both & and &, tier ¢’ slots have the lowest precedence and are filled with tier ¢’ students.

function C(-) weakly increases.

Hence, it is sufficient to compare the mass of tier ¢’ students chosen for the merit slots by C(-)
under & and 5.

Denote the infimum score of tier t € T\ {¢'} students assigned to tier ¢ slots by C(-) under &
and & with & and l%t, respectively. Since some merit slots precede the tier slots under & whereas

no merit slot precedes any tier slot for tier t # ¢’ under 5, we have

k k
/ft‘](k:)dk > || = /ft‘](k:)dk for all t € T'\ {t'}. (4)
ket

ke

Equation (4) implies that k; > k; for all t € T\ {¢'}. Let £, and /; be the infimum score of
the tier ¢t € T\ {t'} students chosen by C(-) under & and 5, respectively. First note that, tier
t € T\ {t'} students will not be selected for tier ¢’ slots by C(-) under either & or 5. We consider
two possible cases.

Case 1 (I, > {; for some t € T\ {t'}): Since k; > ki, there exist some students with score
lower than ¢; who are chosen for merit slots by C(-) under &, but not 5. In other words, the
infimum score of students chosen for the merit slots by C(-) under & is less than C(-) under B.
Since the merit slots precede tier ¢’ slots under both 5 and 5, all tier ¢’ students chosen for the
merit slots by C(-) under & are also chosen by merit slots by 5. Hence, C* (5,.J) C C* (8, J).

Case 2 (I, < I, for each t € T\ {t'}): Under this case, C'(5,.J) C C'(8,.J). Since all slots
are filled, each tier ¢’ students selected by C(-) under & is also selected by C(-) under B, i.e.,

18Notice that, we can treat all ¢’ slots and the merit slot group S2, as a school independent from the preceding
slots.
19We illustrate examples of precedence orders 1>, &, and & in Figure A.2.
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ct'(s,J) C Ct' (5, J). O

Remark 2 Lemma 6 holds even if S does not include any tier t' slots.

If Assumption 1 holds for a given population, then, under any precedence order, Assumption
1 continues to hold when we consider the remaining sets of students and slots after each slot is

filled. Hence, we can use Lemma 5 and 6 to prove Proposition 1.

Proof of Proposition 1.(i): Consider an arbitrary precedence »'. Without loss of generality,
by Remark 1, we assume the relative precedence order of merit slots are the same under both
& and o/. If there are no merit slots (i.e., if S,, = @), then C(/,I) = C(>,1) by Lemma 1. We

have two cases to consider.

ot [l t t*.m m| ts t*. ]
By Lemma 1

t* assignment

doesn’t change

m| m] t . ta| t] ¢
By Lemma 5.(7)

t* assignment
weakly increases

Lemma 5.(i) invoked here
N

o |t [k tl.m m| t* tz. Y ]
ot [k tl.\m m]| t t2. ] ]

Lemma 5.(ii) invoked here
/\

\
> | t1] t2 751.752 lo| m| m A A
By Lemma 5.(i%)

Lemma 5.(ii) invoked here t* assignment
weakly increases
o | 0 [ i tl.tg o m| m| ] ] ¢*

Figure A.3: Illustration of Case 1 of Proposition 1.(i)

By Lemma 1
t* assignment
doesn’t change

By Lemma 5.(ii)
t* assignment
weakly increases

Case 1 (There is one merit slot group under '): Here is our proof strategy for Case

1. We will construct a sequence of precedences where the first element is by, = >’ and the last
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element is 5. We will show that t* assignment weakly increases under choice function C(+) as we
move from one element of the sequence to the next one.

Let >, = > be the first element of the sequence. Construct >} from »>{; by moving each slot
of type t* to the end of their tier slot group so that each tier slot of type t* has lower precedence
than each tier slot of any other type ¢t within their tier slot group. See construction of precedence
>} from >}, in Figure A.3. (This and subsequent figure illustrate the four tier case without loss

of generality.)
Claim 1 C¥ (b}, 1) = C" (5}, I).

Proof of Claim 1: Since >{ and »} are equivalent, the desired result immediately follows from
Lemma 1. &

There is potentially a tier slot of type t* immediately before the only merit slot group under
). If such a slot does not, then >, = . Otherwise, construct >, from >} by moving all the
adjacent tier t* slots from immediately before the unique merit slot group to immediately after

it. See construction of precedence b4 from >} in Figure A.3.
Claim 2 C¥ (b}, 1) D C* (), 1).

Proof of Claim 2: Let S’ be the set of merit slots (in the unique merit slot group) together
with all of the adjacent type t* slots that are immediately before the merit slot group for the

case of > and immediately after it for the case of >,. By Lemma 5.(i), we have

U ciehn 2 | od e D. (5)

ses’ ses’

Equation (5) together with Lemma 3 complete the proof of Claim 2. O
Next we consider the set of tier slots after the unique merit slot group under . Construct

>4 from > by reorganizing tier slots in this set so that

1) slots of the same type are processed subsequently as a group, and

2) slots of type t* have the lowest precedence and thus are processed at the end.
See construction of precedence >j from 1, in Figure A.3.
Claim 3 C* (b4, 1) = O (54, I).

Proof of Claim 3: Since >/, and >} are equivalent, the desired result immediately follows from
Lemma 1. &

The argument for the remaining steps will be identical, and hence we only state it once.
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Let ¢ be the tier that is processed after the unique merit slot group >5. If ¢ = ¢*, then
>4 =5 and we are done. Otherwise, construct > from >4 by moving all the adjacent tier ¢’ slots
from immediately after the unique merit slot group to immediately before it. See construction

of precedence > from 5 in Figure A.3.
Claim 4 C¥ (v, 1) D C* (5%, 1).

Proof of Claim 4: Let S’ be the set of merit slots (in the unique merit slot group) together
with the with all of the adjacent type ¢’ immediately after the merit slot group for the case of

>4 and immediately before it for the case of >y. By Lemma 5.(ii), we have
U crehna U eses . (6)
ses’ s€S’

Equation (6) together with Lemma 3 complete the proof of Claim 4. &

Repeated application of the last step of the construction for each ¢ # t* gives us the desired

result.20

ot m| m| Tt m| ta| tF| t3| m| t¥| to

By Lemma 6

t* assignment

Lemma 6 invoked here weakly increases

ot m| o m| Tty ta| t3| m| m| tT| t¥| to

By Lemma 6

t* assignment

Lemma 6 invoked here weakly increases

ot ts ] ta | B3| m| m| m| m| tT| tT| t¥| t2

Figure A.4: Illustration of Case 2 of Proposition 1.(i)

Case 2 (There is more than one merit slot group under »'): Here is our proof strategy
for Case 2. Given b’ with at least two merit slot groups, we will construct a precedence > which
has one less merit slot group than under >’, and that weakly increases t* assignment under choice
function C(-). Repeated application of this construction will eventually transform Case 2 to Case
1 where we have already obtained the desired result.

Construct > from ' by moving all tier t* slots between the last two merit slot groups
immediately after the last merit slot group, and moving all other tier slots immediately before
the penultimate merit slot group. Observe that under the new precedence >”, there is one less

merit slot group than under »’. See construction of precedence b” from >’ in Figure A.4.

20Tn Figure A.3 the last step is applied twice: first when p} is constructed from from pj, and second when >}
is constructed from from .
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Claim 5 C*" (v, 1) 2 C*" (', ).

Proof of Claim 5: Let S/, and S*,. denote tier ¢t* slots and other tier slots between the last
two merit slot groups under . Let S’ be the last two merit slot groups together with the tier
slot group between them for the case of b’ or equivalently the last merit slot group together with

the tier slots in Sf. and S%,. for the case of >”. By Lemma 6, we have

Ucre”.no |l e, (7)

ses’ ses’

Equation (7) together with Lemma 3 complete the proof of Claim 5. O

Repeated application of this construction decreases the number of merit slot groups, and
eventually gives us a precedence order with one merit slot group. Hence, application of the steps

in Case 1 to this precedence order gives us the desired result.?! O

Proof of Proposition 1.(ii): Consider an arbitrary precedence >'. Without loss of generality,
by Remark 1, we assume the relative precedence order of merit slots are the same under both
> and . If there are no merit slots (i.e., if S, = 0), then C(>',I) = C(>,I) by Lemma 1. We

have two cases to consider.

Case 1 (There is one merit slot group under ©'): In this case, the construction of the
sequence of the precedences as well as the proof itself are completely analogous to that in Case
1 of the proof of Proposition 1.(i) with a reverse construction. Instead of repeating the entire

argument, we illustrate the modified construction with Figure A.5.

Case 2 (There is more than one merit slot group under »>'): Here is our proof strategy
for Case 2. We will construct a sequence of precedences where the first element is b, = ' and
the last element is >. We will show that t* assignment weakly decreases under choice function
C(+) as we move from one element of the sequence to the next one.

Let >, = >’ be the first element of the sequence. We consider the tier slot groups under j,.

Construct ) from >{, by reorganizing tier slots in each tier slot group so that

1) slots of the same type are processed subsequently as a group, and

2) slots of type t* have the highest precedence and thus are processed at the beginning.

See construction of precedence > from > in Figure A.6.

Claim 6 C¥ (>}, 1) = C" (5}, 1).

2In Figure A.4, this construction is applied twice: first when " is constructed from 1/, and second when "’
is constructed from .
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By Lemma 1
t* assignment

Lemma 5.(i) invoked here
VAN

doesn't change

By Lemma 5.(1)
t* assignment

weakly decreases

By Lemma 1
t* assignment
doesn't change

By Lemma 5.(it)
t* asstgnment
weakly decreases

By Lemma 5.(i1)
t* assignment
weakly decreases

By Lemma 5.(it)
t* asstgnment
weakly decreases

Figure A.5: Tllustration of Case 1 of Proposition 1.(ii)

Proof of Claim 6: Since >( and >} are equivalent, the desired result immediately follows from
Lemma 1. &

There is potentially a tier slot of type ' # t* immediately before the last merit slot group
under >|. If such a slot does not exist, then b, = . Otherwise, construct >, from >} by moving
all of the adjacent tier ¢’ slots from immediately before the last merit slot group to immediately

after it. See construction of precedence 4 from >} in Figure A.6.
Claim 7 C¥ (), 1) C C¥ (b4, 1).
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Lemma 5.(ii) invoked here

Vv

By Lemma 1

t* assignment
doesn't change

By Lemma 5.(it)
t* assignment

weakly decreases

By Lemma 5.(it)
t* assignment
weakly decreases

By Remark 2
t* assignment

/

Remark 2 invoked here
weakly decreases

.

By Lemma 1

t* assignment
doesn’t change

Lemma 5.( 11) invoked here

N t1.m e

Remark 2 invoked here

> tl.t* m| m| m

Figure A.6: Illustration of Case 2 of Proposition 1.(ii)

By Lemma 5.(it)
t* assignment

/

weakly decreases

By Remark 2
t* assignment

weakly decreases

Proof of Claim 7: Let S’ be the last merit slot group together with all of the adjacent type t’
slots immediately before the merit slot group for the case of ] and immediately after it for the

case of >,,. By Lemma 5.(ii), we have

U Ct* [>2a U Ct l>17 (8)

seS’! ses’

Equation (8) together with Lemma 3 complete the proof of Claim 7. &
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Repeated application of this step of the construction for each ¢t # t* gives us a precedence
order denoted with b”. If there exists unique merit slot group under >”, then application of the
steps in Case 1 to >” gives us the desired result. Otherwise, under >” there potentially exists
a tier slot of type t* immediately after the penultimate merit slot group. If such a slot does

not exist, then > = p”.

Otherwise, construct b from »” by moving all of the adjacent tier
t* slots from immediately after the penultimate merit slot group to immediately before it. See

construction of precedence > from > in Figure A.6.
Claim 8 C* (b)), 1) C CY (", 1).

Proof of Claim 8: If > =" then the result is immediate. Let S’ be the last two merit slot
groups together with type t* slots between them for the case of " and the last merit slot group
together with all of the adjacent type t* slots immediately before it for the case of bfj. By Lemma
5.(ii), we have
Ucles.nc e n. (9)
s€S’ ses’
Equation (9) together with Lemma 3 complete the proof of Claim 8. &
Repeated application of these steps of the construction for last two merit slots decreases the
number of merit slot groups and eventually gives us a precedence order with a unique merit slot
group. Then application of the steps in Case 1 to this final precedence order gives us the desired
result. O

A.3 Proof of Proposition 2

It is immediate from Lemma 1 that balancedness implies tier-blindness. To prove tier-blindness
implies balancedness, we show that any unbalanced precedence order is not tier-blind. For a
given S and 7, let > be a precedence order which is not balanced. Let s;, denote the A" slot
under >. Let Sy = {s € S|7(s) =t} for each t € T. Let 7 be a merit-preserving bijection with
n(t) = t, m(t) = {, and 7(t) =t for all t € T\ {{,t}. Note that s is a tier slot under (7,)
if and only if sp is a tier slot under (mw(7),>) for each h € {1,2,...,|S|}. We show that there
exists a subset of students J C I such that C(S,r,>,J) # C(S,n(7),>,J) and, therefore, > is

not tier-blind. There are two possible cases.

Case 1 (|Si| = |S¢| for all t,t' € T): Suppose under (,>) the first b > 0 slots constitute
a balanced precedence order and for any & > b the first o’ slots fail to constitute a balanced
precedence order. We call the portion of > with the lower precedence than slot s; the unbalanced
portion of >. Note that the unbalanced portion of > starts with a tier slot under both 7 and
m(7), i.e., T(sp1) # m and w(7(spy1)) # m.

There exists at least one merit slot in the unbalanced portion of > under 7 (and, therefore
m(7)). Otherwise, > would be a balanced precedence order under 7. Denote the merit slot with

the highest precedence under > in the unbalanced portion with §. Let u; be the number of tier
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t € T slots between s, and § under (7,>). Due to the unbalancedness, u; # uy for some t,t' € T.
Without loss of generality, we take u; > u;.

Now consider a subset of students J with the following score distribution:
i) S R (k)dk = b, and £ (k) = f,(k) for all k € [k*,F] and #/,¢" € T,
i) [ f7(k)dk =u; and [} £/ (k)dk =0 for all t € T\ {f},

iii) [t £/ (k)dk = |S| and [}, f/ (k)dk = 0 for all t € T \ {i}.

‘ i
uooobE
7 v e P
| | f£
Y
e P
‘ i
oy g (i)
N
K’ 1% k* k

Figure A.7: Score distribution for Case 1 of Proposition 2

From J, under both 7 and 7(7), C(*) selects all students with score between [k*, k] to the first
b slots, i.e., the slots in the balanced portion. Moreover, a positive mass of tier ¢ students with
score between [k’, k*) will be chosen for the merit slots in the unbalanced portion by C(-) under
7. However, none of the tier # students will be selected for the merit slots in the unbalanced
portion by C(:) under 7(7). Hence, the mass of tier # students in C(S,7,>,J) is strictly more
than (b,,,/t) + |S;| and the mass of tier £ students in C(S,7(7),>,J) is exactly (byn/f) + |S3.
Therefore,

c(S,1,>,J) #C(S,n(1),>,J).

Case 2 (|Si| # |Sy| for some t,1' € T): Without loss of generality we take [Sz| > |S;l.
Then, consider the following score distribution: |, kk’; fg’ (k)dk = |S| and [, kk* f(k)dk = 0 for all
t € T\ {t}. Then, the mass of tier ¢ students in C(S,7,>,J) is |Sy| + |S;| and the mass of tier ¢
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students in C(S,7(7),>,J) is |Sm| + [S;| . Since |S;| > |5},

c(S,1,>,J) #C(S,n(1),>,J).

A.4 Proofs of Theorem 1 and Proposition 3

We use the following Lemmatta to prove Theorem 1 and Proposition 3.

Lemma 7 Fiz the set of slots S, type function T, and precedence order > such that > is a balanced
precedence. Let G = {G',G?,...,G"} be the set of all tier slot groups where all slots in G" precede
the ones in G™*1. For any tiert € T, let £} and Z%‘ denote the supremum score of tier t students
available to be admitted, i.e. the set of remaining students when all preceding slots are processed,
and the infimum score of tier t students admitted to the tier slot group G" from I by C(-),
respectively. If f;(k) > fy(k) for all k € K, then for any r € {1,2,...,h}

07 > 0y and 05 > 0},

Gl G2
/\ /\
> m | ¢t t | m t/
fi
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 ft/
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
2 o0 =00 0t =0k

Figure A.8: Illustration of Score Distributions for f; and fy, and the Infimum and Supremum
Scores

Proof. For each r € {1,2,...,h}, we denote the merit slot group between G"~! and G" by H"
where GV is the beginning. The proof is by induction. We start with tier slot group G'. There
exists /L € K such that

= k
Z/ﬁ(k)dk = |H|.
t:1£71n

If H' = (), then all students are available to be selected for tier slot group G'. Otherwise, all
students with score at least £} < k are selected for the merit slots preceding G*. In either case,
E% > ¢}, since f;(k) > fy(k) for all k € K. Moreover, balancedness implies
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1
_ ¢l forall t e T. (10)

Equation (10) and the facts that E% > ¢}, and f;(k) > fy (k) for all k € K imply that l& >0}
Suppose the result holds for all the tier slot groups preceding tier slot group G” where 7 < h.
That is, E::_l > ﬁf,_l and !7;_1 > g?,_l. Then, there exists ¢7, € K such that

sr—1
ét

fio(k)dk = |H).
> [ i =

14

That is, all tier ¢t € T students with score at least min{ﬁfm,gf 71} are selected for slots preceding
G". Since Z;f_l >t min{@fn,é;_l} > min{¢7,, 7, '}. Therefore, f;(k) > fu(k) for all k € K

implies that ¢7 > /},. Balancedness implies

e i}
/ft(k)dk = |Ci | forallteT (11)
Vis

Equation (11) and the facts that 7 > ¢}, and f;(k) > fy (k) for all k € K imply that ? > 07,
This completes the proof.?? ]

Lemma 8 Fix the set of slots S and their types T such that |Sy,| > 1 and |Sy| = |Sy| > 1 for
all t,t' € T. Let> be a precedence order over S in which all merit slots precede all tier slots and
5 be a precedence order over S in which all tier slots precede all merit slots.>® Let J C I be a
subset of students such that nf > |Sy| + |Sm| for allt € T.

(i) Under Assumption 2, i.e., fi (k) < f/(k) for allt € T and k € K, the mass of tier 1
students in C(>,J) is weakly greater than in C(5,J).

(it) Under Assumption 3, i.e., f{(k) < fI(k) for allt € T and k € K, the mass of tier t
students in C'(5,J) is weakly greater than in C(>,J).

Proof. Let ¢, and Em denote the infimum of the scores of students selected for the merit slots
from J by C(-) under > and 5, respectively. For each t € T, let ¢; and ?; be the infimum of scores
of students selected for the tier ¢ slots from J by C(:) under > and 5, respectively. Let ¢g; and
gt denote the infimum of the scores of tier ¢t € T students in C'(>,J) and C(5,J), respectively.

228ee Figure A.8 for the illustration of the desired result.
23Gee Figure A.9 for examples of > and 5.
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> [ m] m tl.tg 152.751
ISI tl.tQ tg.tl mi| m

Figure A.9: Illustration of precedence orders > and &>

Note that, g = £; and g < 0 for all t € T Since merit slots are processed first under >, we have

L,
/ £ (k)dk = S| forall t € T. (12)
Uy

Similarly, since tier slots are processed before the merit slots under &, we have

E
/ft‘](k)dk =|Sy forallteT. (13)
A

— T A+B=["f/(dk =15

B+C = [{m f(k)dk = |Sj]

/J\M 7 |Sf|:|S{|:>A+B=B+C:>€gZ€{
i

~
<&
o~
~
3
=l [ R

D+ E = [} £ (k)dk = |S]

— Ty B+F=f k=5

S| =S| = D+E=E+F—=1{;>1;
e e e A+B=|S|=D+E—=1i;>(

D+E=|S]|=E+F=(;>{;

]
]
"
4
Figure A.10: Infimum scores under precedence orders > and 5.

Equations (12) and (13) imply that £; > ¢; for all t € T.2* Next, we prove Part (i) and then
Part (ii).

Part (i): Comparison of Tier 1 Assignment in C(>,J) and C(5,J)

240ne can see this relation in Figure A.10.
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By contradiction, suppose that the mass of tier 1 students in C(5, J) is greater than the mass
in C(>,J). That is,

k k
/ﬁ@%</ﬁw%. (14)
g1 g1

Equation (14) implies that g; > 1. The facts that 0 > ly, £1 = g1, and g1 > g1 imply that
{1 > 01 > §1, and therefore, there exist tier 1 students with scores between [G1, 1) selected for
merit slots by C(-) under 5. Hence, under &, the infimum of tier 1 students selected for the merit
slots by C(+) is g1. Since fi(k) > fi(k) for all t € T' and k € K, for all ¢t € T the infimum score

of tier ¢ students in C(5,J) is at most g;. Then, we have

t

D

t=1

f (k)dk < |S]. (15)

Sz\;&q

Equation (14) and g; > g1 imply that

E /k
=15

F k
> [ 1w (16)
t=1 g1

Equations (15) and (16) imply that

£ k
M>Z/MWk (17)
t:1g

For all t € T, Equation (12) and the fact that f;(k) > f1(k) for all k € K imply that ¢; > ¢1.%°
Since g = ¢, for all t € T', ¢; > £1 implies that

ik ik
S [ #wan=Y" [ w5 (18)
t:1gl t=1 gt

Equations (17) and (18) imply that

-k
t
W>Z/HWMZM
t:191

This is a contradiction.

#Gince fi(k) > fi(k) for all k € K and t € T, in Figure A.10, tier £ plays the role of tier 1, and tier £ plays the
role of tier ¢. Hence, Figure A.10 illustrates the relation between ¢; and ¢;.
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Part (ii): Comparison of Tier ¢ Assignment in C(>,J) and C(5,J)

We consider two possible cases. First, we consider the case in which for all ¢ € T\ {¢} the
mass of tier ¢ students in C'(5, J) is weakly less than the one in C(>, .J). Since all slots are filled
by C(-) under > and 5, then the mass of ¢ students in C(5,.J) is weakly greater than the mass
in C(>,J). Now we consider the case in which there exists some tier ¢ € T\ {t} such that the
mass of tier t’ students in C(5,J) is strictly is greater than the mass in C'(>, J). Then,

\?r

Fil(k)dk < / fi (k (19)

gz/

Equation (19) implies that gy > gy . by > by, by = gy, and gy > Gy imply that fy > €y > Gy,
and therefore there exist tier ¢ students with scores between [gy, £y) assigned to merit slots by
C(-) under 5. Since fi(k) > fy (k) for all k € K, the infimum score of tier ¢ students assigned in
C(5,J) is at most gy. Equation (12) and the fact that f;/(k) < f{ (k) for all k € K imply that
ly < £:.%6 Since ¢y = g; for all t € T, £y < f; implies gy < gz Since Gy < g, gr < g7 and the
infimum score of tier ¢ students assigned in C(&, J) is at most gy, the mass of tier ¢ assignment
in C(5,J) is weakly is greater than the mass in C(>, J). O

Lemma 9 Fix the set of slots S and their types T such that |Sy,| > 1 and |S¢| = |Sy| > 1 for all
t,t' € T under 7. Let SL and S2, be two nonempty disjoint subsets of Sy,. Let > be a precedence
order over S in which merit slots in S} precede all tier slots and all tier slots precede the merit

slots in S2,, and & be a precedence order over S in which all tier slots precede the merit slots.
Let J C I be a subset of students such that n/ > |S;| + |Sp| for allt € T and k € K.

(i) Under Assumption 2, i.e., fi (k) < f/(k) for allt € T and k € K, the mass of tier 1
students in C(>,J) is weakly greater than in C(5,J).

(it) Under Assumption 3, i.e., f{ (k) < fI(k) for allt € T and k € K, the mass of tier t
students in C'(5,J) is weakly greater than in C(>, J).

> m| m| t1| ta| to| to| C3| t1| m| m

D> th| B3| to| Lo &3| t1 | m| m| m| m

Figure A.11: Hlustration of precedence orders > and &

268ince f; (k) < f{ (k) for all k € K, in Figure A.10, tier £ plays the role of tier ¢/, and tier ¢ plays the role of
tier £. Hence, Figure A.10 illustrates the relation between ¢,; and /.
27See Figure A.11 for the examples of > and B.
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Proof. Denote the infimum score of tier ¢ students in C(>,J) and C(5,J) with ¢g; and g,
respectively. Let e; and & be the infimum score of tier ¢ students assigned to first £ x [S1| +|S} |
slots by C(-) under > and &, respectively. Let ¢; and ?; denote the infimum score of tier ¢ students
assigned to tier ¢ slots by C(-) under > and &, respectively. Since all tier slots are processed first
under 5 but some merit slots are processed first under >, ¢, > ¢, for all ¢t € T. Next, we prove
Part (i) and then Part (ii).

Part (i): Comparison of Tier 1 Assignment in C(>,J) and C(5,J)
By contradiction, suppose that the mass of tier 1 students in C(5,J) is is greater than the

mass under C'(>, J). That is,
k k
/ £ (k)dk < / £ (k)dk. (20)
91 g1

Equation (20) implies that g; > ¢;. By Lemma 8, é; > e;. By our construction, e; > g;.
Then, we have é; > e; > g1 > g1. Hence, there exist tier 1 students with score between [§1, g1)
assigned to the last merit slot group by C(-) under 5, and therefore the infimum of tier 1 students
selected for the last merit slot group by C(-) under 5 is g;. Since fi(k) > fi(k) for all t € T and
k € K, then for all ¢ € T' the infimum score of tier ¢ students in C'(5,J) is at most g;. That is,

f k
3 / £ (k)dk < |S]. (21)
t=1 !:71

By Lemma 7, e, > e for all t € T. Since tier 1 students with score between [§1, g1) are not
assigned to the last merit slot group under > and e; > e; > g1 > g1 for all ¢t € T, students with
score between [g1, g1) cannot be selected by C(-) under >. That is,

t
> (k)dk > |S]. (22)

t=1

Sl\w\

Equations (21) and (22) imply that

t_ /k
t=1 1

r Kk
i (k)dk > |S| > Z/ft‘](k)dk
=15

This is a contradiction.

Part (ii): Comparison of Tier ¢ Assignment in C(>,J) and C(5, )
On the contrary, suppose that the mass of tier ¢ students in C'(>,J) is is greater than the
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mass in C(5,J). That is,

k E
[ war> [ 7 aar. (23)
9% 73

Equation (23) implies that g; < gz. Since f7(k) > f/(k) for all t € T and k € K, the last
slots under both precedence order are merit slots, g; and g; are the infimum scores of students

assigned to the merit slots under > and 5, respectively. Then, the mass of tier t € T students in

C,J) is

k E
max / £ (k)dk, / £ (k)dk p . (24)
9t I

Similarly, the mass of tier ¢ € T students in C (5, J) is

k k
max / 1 (k)dk, / fl(k)dk 3 . (25)
9¢ U

Since g; < gi, the first term of Equation (24) is (weakly) greater than the first term of Equation
(25). Similarly, since ¢, > ¢; the second term of Equation (24) is (weakly) greater than the
second term of Equation (25). Hence, for all t € T,

k k k k
max / £ (k)dk, / £/ (k)dk p > max / £ (k)dk, / f(k)dk 3 . (26)
9z ly 9z A

Equation (26) implies that the mass of each tier ¢ students in C(>, J) is weakly greater than
the mass in C(5,.J). However, since the same number of slots are filled under > and & and the
mass of tier ¢ students in C(>, J) is strictly greater than the mass in C(5,.J), at least one tier’s

assignment needs to be smaller in C(>, J). This is a contradiction. u

Proof of Theorem 1. Fix a set of slots S and a type function 7 such that S,, # 0. We first
show that among the balanced precedence orders the maximal tier 1 assignment is attained when

all merit slots precede the tier slots.

Maximal Tier 1 Assignment: Let > be a balanced precedence order such that all merit slots
precede the tier slots. Consider an arbitrary balanced precedence order b’ such that at least one
merit slot is preceded by a tier slot. We will construct a sequence of precedences where the first
element is >{, = >’ and the last element is 5. We will show that tier 1 assignment weakly increases
under choice function C(-) as we move from one element of the sequence to the next one.

Let >{, = >’ be the first element of the sequence. Let H and G denote the the last merit slot

group and the tier slot group immediately before it under >, respectively. Construct >} from
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Dé: m| ta| 1| ta| &3] m| m| ta ty| ts t1| m

By Lemma 8.(1)

tierl assignment
weakly increases

Lemma 8.(1) invoked here

Dll: m| ta| t1| t4| t3| m| m| m| ts ty| t3 11

By Lemma 8.(i)
tierl assignment

Lemma 8.(i) invoked here weakly increases

l>/2: m| m| m| m| to| t1| t4| ta| T2 ty| T3 t1

Figure A.12: Maximal Tier 1 Assignment under Balanced Precedence Orders

>y by moving merit slot group H from immediately after the tier slot G group to immediately

before it. See construction of precedence >} from > in Figure A.12.
Claim 9 C'(>},I) 2 C'(>), ).

Proof of Claim 9: First note that the score distributions of available students to be admitted
by C(-) to tier slot group G under >}, and to merit slot group H under >] satisfy Assumption 2.
Let S’ = HUG. By Lemma 8.(i) we have

U ciehn 2 U cleho. (27)

ses’ ses’
Equation (27) together with Lemma 3 complete the proof of Claim 9. &
Repeated application of this step of the construction for the last merit slot group preceded

by a tier slot group gives us a precedence order equivalent to &. Hence, this fact together with

Lemma 1 gives us the desired result.

Minimal Tier 1 Assignment: Let > be a balanced precedence order such that all tier slots
precede the merit slots. Consider an arbitrary balanced precedence order >’ such that at least
one tier slot is preceded by a merit slot. We will construct a sequence of precedences where the
first element is b, = >’ and the last element is . We will show that tier 1 assignment weakly
decreases under choice function C(-) as we move from one element of the sequence to the next
one.

Let >, =’ be the first element of the sequence. Let G and H denote the the last tier slot
group and the merit slot group immediately before it under >, respectively. Construct ) from
>y by moving tier slot group G from immediately after the merit slot group H to immediately

before it. See construction of precedence >} from > in Figure A.13.
Claim 10 C'(>}, 1) C CY(sp, 1).
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l>6: m| to| t1| ta| t3| m| m| &2 tal t3| 1| Mm

By Lemma 9.(1)

tier 1 asstgnment
weakly decreases

Lemma 9.(i) invoked here

ot M| e | ti| by | B3] f2| l4f B3| ti| m| m| m

By Lemma 9.(i)

Lemma 9.(i) invoked here tier 1 assignment
weakly decreases

oy | ta| G| ta| B3| b2 ta| l3| ti| m| m| m| m

Figure A.13: Minimal Tier 1 Assignment under Balanced Precedence Orders

Proof of Claim 10: First note that the score distributions of available students to be admitted
by C(-) to merit slot group H under >{, and to tier slot group G under >] satisfy Assumption 2.
Let S" be the set of slots in H together with all slot groups after H for the case of >, and be
the set of slots in G together with all slot groups after G for the case of >{,. If S = HUG by

Lemma 8.(i), otherwise by Lemma 9.(i) we have

U cieinc | cieh . (28)

ses’ ses’
Equation (28) together with Lemma 3 complete the proof of Claim 10. &
Repeated application of this step of the construction for the last tier slot group preceded by

a merit slot group gives us a precedence order equivalent to . Hence, invoking Lemma 1 to the

final precedence order obtained through this step gives us the desired result. (]

Proof of Proposition 3. Fix a set of slots S and a type function 7 such that S,, # 0. We first
show that among the balanced precedence orders the minimal tier ¢ assignment is attained when

all merit slots precede the tier slots.

Minimal Tier ¢ Assignment: Let 5 be a balanced precedence order such that all merit slots
precede the tier slots. Consider an arbitrary balanced precedence order b’ such that at least one
merit slot is preceded by a tier slot. We will construct a sequence of precedences where the first
element is >{, = >’ and the last element is 5. We will show that tier ¢ assignment weakly decreases
under choice function C(-) as we move from one element of the sequence to the next one.

Let >{, = >’ be the first element of the sequence. Let H and G denote the the last merit slot
group and the tier slot group immediately before it under >, respectively. Construct >} from
>y by moving merit slot group H from immediately after the tier slot G group to immediately

before it. See construction of precedence >} from > in Figure A.14.
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[>6:m to | 11 t4.m m| t9 t4. ti| m
By Lemma 8.(it)

Lemma 8.(ii) invoked here | tier ¢ assignment

weakly decreases
[>/1:m to | 11 t4.m m| m| to t4. t1

Lemma 8.(ii) invoked here

|>/2: m| m| m| m| ta| 1 t4- to t4. t1

Figure A.14: Minimal Tier ¢ Assignment under Balanced Precedence Orders

By Lemma 8.(i1)

tier t assignment
weakly increases

Claim 11 C*(}, 1) C Ct(>), I).

Proof of Claim 11: First note that the score distributions of available students to be admitted
by C(-) to tier slot group G under >}, and to merit slot group H under > satisfy Assumption 3.
Let 8" = HUG. By Lemma 8.(ii) we have

U cieh.n e ([ cie. D). (29)
ses’ ses’
Equation (29) together with Lemma 3 complete the proof of Claim 11. &
Repeated application of this step of the construction for any last merit slot group preceded
by a tier slot group gives us a precedence order equivalent to >. Hence, this fact and Lemma 1

gives us the desired result.

[>6: m| to| 61| s lm m| to t4. ti1| m

By Lemma 9.(i%)

Lemma 9.(i1) invoked here tier t assignment
weakly increases
o [l & t4't2 I EERE
By Lemma 9.(ii)
Lemma 9.(ii) invoked here tier t assignment

weakly increases

>, Ll & t4.t2 t4. t] m| m[ m[ m

Figure A.15: Maximal Tier ¢ Assignment under Balanced Precedence Orders

Maximal Tier ¢ Assignment: Let > be a balanced precedence order such that all tier slots
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precede the merit slots. Consider an arbitrary balanced precedence order >’ such that at least
one tier slot is preceded by a merit slot. We will construct a sequence of precedences where the
first element is >{, = >’ and the last element is >. We will show that tier ¢ assignment weakly
increases under choice function C(-) as we move from one element of the sequence to the next
one.

Let >, =’ be the first element of the sequence. Let G and H denote the the last tier slot
group and the merit slot group immediately before it under >, respectively. Construct ) from
>y by moving tier slot group G from immediately after the merit slot group H to immediately

before it. See construction of precedence >} from > in Figure A.15.

Claim 12 C'(}, 1) D CH(p), I).

Proof of Claim 12: First note that the score distributions of available students to be admitted
by C(-) to merit slot group H under >{, and to tier slot group G under >| satisfy Assumption 3.
Let S" be the set of slots in H together with all slot groups after H for the case of >, and be
the set of slots in G together with all slot groups after G for the case of bf,. If S = HUG by

Lemma 8.(ii), otherwise by Lemma 9.(ii) we have
U cehn 2 U eeh D (30)
seS’ ses’

Equation (30) together with Lemma 3 complete the proof of Claim 12. O
Repeated application of this step of the construction for any last tier slot group preceded by
a merit slot group gives us a precedence order equivalent to . Hence, this fact and Lemma 1

gives us the desired result. O

A.5 Proof of Proposition 4

Fix the set of slots S and precedence order . Let h,e € N such that h > e x t. Let 7 and 7 be

two type functions such that
e The first h and h — (e x t) slots under (7,>) and (7,>) are merit slots, respectively, and
o {seS:7(s)=t}+e={seS:7(s) =t} forallteT.

Let S; = {se€S:7(s)=t}and S; = {s € S : 7(s) =t} for all t € T. We denote the
infimum scores of students selected from I for the merit slots by C(-) under 7 and 7 with ¢ and

i , respectively. Then,

>

t=1

fi(k)dk = h and Z =h—(ext). (31)

N\w\
N\k\
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By Assumption 1, under both 7 and 7, tier ¢ slots are filled with only the tier ¢ students. Hence,
for each ¢t € T, the mass of tier ¢ students in C'(S,>, 7, 1) is

e\\w\

Similarly, for each t € T' the mass of tier ¢ students in C(S,>,7,1) is

Fe(k)dk +[S). (33)

(\>\??‘\

Equation (31) implies that ¢ < /. Hence, we can rewrite the first part of Equation (31) as

t=1

zt:/kft k)dk + Zt:/g (34)
] t=1%

and Equation (32) as

k
/ k) dk +/ (k) + |Si]. (35)
¢
The second part of Equation (31) and Equation (34) imply that
7 L
Z/ft(k)dk =exl. (36)
t=17

Assumption 2 and Equation (36) imply that the mass of tier 1 students selected from I for

the merit slots by C(+) under 7 is at most

k)dk + e. (37)

S —
=

By Equations (35) and (37), the mass of tier 1 students in C'(S,>,7,1) is at most

k)dk‘ +e+ |Sl|

S
=
-

Assumption 3 and Equation (36) imply that the mass of tier ¢ students selected from I for
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the merit slots by C(-) under 7 is at least
k
/ (k) dk + e. (39)
‘

By Equations (35) and (38), the mass of tier ¢ students in C(S,>,7,1) is at least

E
/ft(k)dk‘ +e+ |S{|.
2

By construction, |S;| = |S;| + e for all ¢ € T'. Hence, we can rewrite Equation (33) for tier 1,

i.e., the mass of tier 1 students in C'(S,>,7, 1), as

k
/fl(k)dk+e+|51|,
;

which is equal to the maximal tier 1 assignment in C(S,>,7,I). Similarly, we can rewrite

Equation (33) for tier ¢, i.e., the mass of tier ¢ students in C(S,>, 7, 1), as

k
/ SRk + e + |5,
?

which is equal to the minimal tier ¢ assignment in C'(S,>, 7, ). O

A.6 Proof of Proposition 5

First notice that, since both > and >’ are tier-blind precedence orders, by Proposition 2, the
number of tier ¢ slots is equal to the number of tier ¢’ slots for any ¢,t' € T.

Let f be a score distribution satisfying Assumptions 1 and 4. Let I’ be student popula-
tion with score distribution g such that fi(k) = g1(k) < go(k) < ... < gi_1(k) < gz(k) and
ZLI fi(k) = 25:1 gi(k) for all k € K. Notice that, score distribution g satisfies Assumptions 1
and 2. Hence, Theorem 1 implies that C1(>,I') D C1(v', I).

By our construction of score distribution g, the infimum scores of students assigned to merit
slots under C'(>,I) and C(>,I’) are the same. Since f1(k) = g1(k) for all k € K, the masses of
tier 1 students assigned to merit slots under C(>,I) and C(>, I") are the same. Moreover, since
we consider the same number of tier slots (each with unit mass capacity) under both C(>,I) and
C(>,I"), we have |C1(>, I)| = |Ct(>, T')).

Let f{ and ¢/ be the infimum scores of tier ¢ students assigned to tier slots under C (>, )
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93
92
f1 g1
f2
k k

Figure A.16: Tlustration of score distributions f and g

and C (v, I'), respectively. Since fi(k) = g1(k) < gi(k) for all t € T and k € K, £9 > ¢ = ¢! for
allt € T. Let ¢/ and £9 be the infimum scores of students assigned to merit slots under C'(>', I)

and C(>',I'), respectively. We use the following lemma in the rest of the proof.
Lemma 10 If 1 > ¢f then ¢/ > 19,
Proof. On the contrary, we suppose that 6{ > ¢/ and 6{ < #9. First notice that, K{ > ¢/ implies

that

fi(k)dk <|S]. (39)

o~
Il
—

-
H\\??‘I

Moreover, E{ =0 < /¢ forall t € T and 6{ < #9 imply that

g(k)dk > |S]. (40)

o
Il

1

-
H%\e\w

Since 25:1 gi(k) = 25:1 fi(k) for all k € K, we can rewrite Equation 40 as

-k
T
> [ i > 13). (41)
t=1"
Zl
Equations 39 and 41 imply that
ik ik
> [ fwdk =152 Y [ sk,
=1 t=1;
1 1
This is a contradiction. O

We consider 3 cases which cover all possibilities.
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Case 1 (E{ < £1): Then, no tier 1 student is assigned to merit slots under C'(>',I). By
Assumption 1, all tier 1 slots are filled with tier 1 students under C(>,I). Hence, C(>',I) C
C(, I). i

Case 2 (¢ > ¢/ for all t € T): Then, Y'_, [} f(k)dk = |S]. Lemma 10 implies that
K{ > (9. Therefore, ¢] > E{ > 09 for all t € T, Zle fgg gi(k)dk = |S| andiff = (9. Since
filk) = g1(k) for all k € K, we have [} fi(k)dk = |C'(/, I)| = |C (!, I')| = [3i gu(K)dk.

I
1 1
1 1
I I
: : , | 93
I I 1 1
92
E i E o
: . L : Do
1 1 1 1 1 1 11
o o ook o =9 YT

Figure A.17: Tlustration of Case 2 of Proposition 5

Case 3 (5{ > ¢/ and E{ < ¢/ for some t # 1): Then 21;:1 fgfc fi(k)dk < |S|. Lemma 10
implies that ¢/ > ¢9. Therefore, ¢ > ¢ > 09 forallt € T, Yy, f;f, gi(k)dk = |S| and €9 < ¢/
Since fi(k) = g1(k) for all k € K, we have [J} f1(k)dk = |C (o, I)| < |C (!, I')| = [3% gu(K)dE.

f3

93

g2
g1

oo d ok ooeEE k
Figure A.18: Ilustration of Case 3 of Proposition 5
Cases 1, 2, 3 and the relation between Cl(>,I') and C'(>/,I’) imply that |[Cl(>,1)] =
|ICY(>, )| > |CH(>', I')| > |C*(>/, I)|. Then, by Lemma 2, we have C1(>,I) 2 C*(>/, I). O

A.7 Relaxing Assumptions 2 and 3

In this subsection, we relax Assumptions 2 and 3 and show that Theorem 1 and Proposition 3 do
not hold under this relaxation. In particular, we consider an environment composed of two tiers,
tier 1 and tier 2, such that the cumulative score distribution of tier 2 first-order stochastically
dominates the cumulative score distribution of tier 1.

Consider the following problem. Let S; = {s1}, S2 = {s2} and S,, = {s}. Each slot has a
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unit capacity and ni; = ng > 2. The score distributions are given as follows:

k1
fo(k)dk = 1 and / fo(k)dk = 0,
k2

E\kl

k Ky
/fl(k)dk = 0 and /fl(k:)dk =1,
k1

ko
fl(ki) = fg(k) for any k < ko.
One can easily verify that, under this problem, the cumulative score distribution of tier 2 first-
order stochastically dominates the cumulative score distribution of tier 1. Let > be a precedence
order in which the merit slot precedes the tier slots. Let ' be a precedence order in which the
merit slot is preceded by the tier slots.

The mass of tier 1 students in C'(>,I) and C(>,I) are 1 and 1.5, respectively. On the other
hand, the mass of tier 2 students in C'(>,I) and C(>/, I) are 2 and 1.5, respectively.

We also show that if we consider a counterpart of Assumption 4 for tier ¢, we do not find a

counterpart of Proposition 5.

Assumption 5 For all k € K,

Assumption 5 states that for each score k € K, the average representation of all other tier
students is weakly less than the representation of tier ¢ students. Since Assumption 3 implies
Assumption 5, by Proposition 3, under Assumption 5 we can find an instance such that a higher
tier ¢ assignment is achieved when all tier slots precede all merit slots compared to the one when
all merit slots precede all tier slots. However, as shown in Example 1, this result does not hold

for all instances.

Example 1 Let T = {1,2,3,4} and k = 100. The score distributions are given as follows:
o fi(k)= fa(k) =0 for k € [90,100];
o f3(k) =1 for k € [90,100];
o fi(k) =1/3 for k € [90,100];

o fi(k)=1 forallt €T and k < 90.

56



There are 4 merit slots and each tier has 1 (reserved) slot. Notice that, f satisfies Assumptions
1 and 5. Let > and ' be the precedence orders in which all merit slots precede tier slots and all
tier slots precede merit slots, respectively.

Under C(>,I) merit slots are filled with students with score at least 97 and each tier t € T

slot is filled with tier t students. Hence, |C*(>, I)| = 2.
Under C (>, I) tier 3 slot is filled with tier 8 students with score at least 99 and tier 4 slot is

filled with tier 4 students with score at least 97. The merit slots are filled with remaining tier 3

and tier J students with score at least 95.5. Hence, |C4(>,I)| = 1.5.
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Figure B1(a): Distribution of Average Composite Scores for Tier 1 and Tiers 2-4
Score distribution shown for applicants who apply to school during course of mechanism. Dashed vertical line indicates
minimum score to be offered a seat while solid vertical line indicates minimum score to be offered a merit seat under CPS
precedence. Lines from local linear smoother (lowess) with bin size of 1.
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Figure B1(b): Distribution of Average Composite Scores for Tier 1 and Tiers 2-4
Score distribution shown for applicants who apply to school during course of mechanism. Dashed vertical line indicates
minimum score to be offered a seat while solid vertical line indicates minimum score to be offered a merit seat under CPS
precedence. Lines from local linear smoother (lowess) with bin size of 1.



