Efficient and Incentive-Compatible Liver Exchange

Haluk Ergin Tayfun Sönmez M. Utku Ünver

U C Berkeley Boston College Boston College

Arrow Lecture

The 14th Meeting of the Society for Social Choice and Welfare June 16th, 2018, Seoul, South Korea

Introduction

- Kidney Exchange became a mainstream transplantation modality within the last fifteen years.
- Annually, more than 700 patients in the US receive kidney transplants through donor exchange.
- In theory living-donor organ exchange can be utilized for any organ for which living donation is feasible.
- Liver is the second most transplanted organ following the kidney.
- Living donation of a lobe of liver is widespread, especially in Asia.

Kidney Exchange

- Human organs cannot received or given in exchange for "valuable consideration" (US, NOTA 1984, WHO)
- However, living-donor kidney exchange is not considered as "valuable consideration" (US NOTA amendment, 2007)

Literature

• Kidney Exchange Literature: Plenty...

- Liver Exchange Literature:
 - Hwang et al. [10] proposed the idea and documented the practice in Korea since 03
 - Chen et al. [10] documented the program in Hong Kong
 - Dickerson & Sandholm [14] asymptotic gains from liver+kidney exchange over isolated liver exchange and kidney exchange
 - Ergin, Sönmez, & Ünver [17] proposed and modeled exchange for transplants each of that needs two living donors: lung, simultaneous liver+kidney, dual-graft liver

Literature

- Kidney Exchange Literature: Plenty...
- Liver Exchange Literature:
 - Hwang et al. [10] proposed the idea and documented the practice in Korea since 03
 - Chen et al. [10] documented the program in Hong Kong
 - Dickerson & Sandholm [14] asymptotic gains from liver+kidney exchange over isolated liver exchange and kidney exchange
 - Ergin, Sönmez, & Ünver [17] proposed and modeled exchange for transplants each of that needs two living donors: lung, simultaneous liver+kidney, dual-graft liver

Contribution

- We model liver exchange as a market design problem different than kidney exchange due to size-compatibility requirement, and the availability of multiple transplant technologies.
- We find the structure of feasible 2-way exchanges and a sequential algorithm to find an efficient matching for two patient/donor sizes.
- The requirement of size compatibility induces an incentive problem for the pair/donor to donate
 - the larger/riskier/easier to match right lobe or
 - the smaller/safer/more difficult to match left lobe
- For any given number of patient/donor sizes, we propose a Pareto-efficient and incentive-compatible mechanism that elicits willingness to donate the right lobe truthfully.
- We introduce a new class of exchange mechanisms for vector-partial-order-induced weak preferences.

Institutions: Living-Donor Liver Transplantation

 Living-donor liver transplantation is the norm in Asian countries, where deceased-donor transplantation is much less common due to cultural reasons and legal non-recognition of brain death.

Figure from Chen et al Nature Reviews Gastroenterology & Hepatology 2013

Medical Background: Lobar Liver Donation

Medical Background: Compatibility

• As in kidney transplantation, blood-type compatibility is required.

- Different than kidney transplantation,
 - tissue-type compatibility is **not** required, but instead
 - size compatibility is required: A patient is in need of a graft that is at least 40% of the volume of his dysfunctional liver.

Institutions: Right-Lobe Liver Transplantation

- Right-lobe transplant has been utilized for size compatibility despite its heightened donor mortality risk.
 - Patient needs at least 40% of his own liver size to survive.
 - Usually right lobe is \sim 60-70%, left lobe is \sim 30-40% of the liver.
 - In many occasions, size compatibility is only satisfied through right-lobe transplantation.

Institutions: Living Donor Deaths

TABLE	1. Deaths	of Living	Donors

Reference	Date	Location	Description
Donor deaths	"definitel	y" related to de	onor hepatectomy
11	2003	Japan	A mother in her late 40s donated a right lobe and died 9 months later from
			complications of hepatic failure.
12	2002	USA	A 57-year-old brother donated a right lobe and developed gastric gas
			gangrene and Clostridium perfringens infection 3 days after surgery and
13	2005	Brazil	died.
13	2005	Brazii	A 31-year-old female right lobe donor of unknown relationship to the recipient died 7 days after surgery from a subarachnoid hemorrhage.
14	2003	India	A donor of unknown age and unknown relationship to the recipient
	2000	********	donated an unknown lobe and died 10 days after surgery of unknown
			causes.
15	2003	India	A 52-year-old wife donated an unknown lobe and became comatose 48
			hours after surgery from unknown causes and remains in chronic
			vegetative state.
16-18	1993	Germany	A 29-year-old mother donated a left lateral lobe and died of a pulmonary
			embolus 48 hours after surgery.
18, 19	2000	Germany	A 38-year-old father donated a right lobe, and 32 days after developing
			progressive hepatic failure, died during transplantation of acute cardiac
			failure. The cause of the donor's death was attributed to Berardinelli- Seip syndrome, a lipodystrophy syndrome characterized by loss of body
			fat, diabetes, hepatomegaly, and acanthosis nigricans.
18. 20	2000	France	A 32-year-old brother donated a right lobe and developed sepsis and
			multiple organ system failure 11 days after surgery and died of septic
		shock 3 days later.	
18	2000	Europe	A 57-year-old wife donated a right lobe and died of sepsis and multiple
			organ system failure 21 days after surgery.
21, 22	1999	USA	A 41-year-old half-brother donated a right lobe and died of pancreatitis
			and sepsis 1 month later.
22, 23	1997	USA	A mother of unknown age donated an unknown lobe to a pediatric
24	2005	Asia	recipient and died 3 days after surgery of unknown causes.
24	2005	Asia	A 50-year-old mother donated a right hepatic lobe. She had no history of peptic ulcer disease and received a 2-week course of H2 antagonist. She
			died 10 weeks after surgery from an autopsy-proven duodenal ulcer with
			a duodenocaval fistula causing air embolism.
25	2006	Asia	A 39-year-old male "close relative" who donated an unknown lobe died of a
			myocardial infarction 4 days after donation. The patient reportedly had a
			preoperative electrocardiogram and treadmill test.
26	2005	Egypt	A brother of unknown age who donated a right lobe died of complications
			of sepsis from a bile leak 1 month after donation.
			nor hepatectomy
27	2005	USA	A 35-year-old brother donated a right lobe and died of a self-induced drug
27	2005	USA	overdose 23 months later. A 50-year-old uncle donated a right lobe and died of a self-inflicted
21	2005	uan	gunshot wound to the head 22 months after donation.
Donor deaths	"unlikely	to be related	to donor hepatectomy
28	2003	Asia	A donor of unknown age and relationship to the recipient who donated an
			unknown lobe died of unknown causes during exercise 3 years after
			donation.
27, 29	2002	USA	A 35-year-old boyfriend donated a right lobe and died in a nonsuicidal
			occupational pedestrian-train accident 2 years after donation. A lone
			railroad car rolling at high speed struck and killed the donor while he
			was on duty at his job for the railroad.
16	2003	Germany	A 30-year-old father donated a left lateral segment and died of
			complications of amyotrophic lateral sclerosis 11 years after successful
00	0000		donation.
30	2003	Japan	A male donor in his 40s of unknown relationship to the recipient donated an unknown lobe died 10 years postoperatively after an apparently
			unrelated surgery.

- Donor mortality rate is 5 times higher for right-lobe donation than left-lobe donation (0.5% to 0.1%).
- Other significant risks, the morbidity rate, also much higher under right lobe donation (28% to 7.5%).
- In 2001, a high profile death of a living right-lobe liver donor in the US decreased living donation not only for livers, but also for kidneys.
- About half of the living-donor liver transplantations are from right lobes.

Institutions: Living-Donor Liver Exchange

- Liver exchange was first practiced in Korea, followed by Hong Kong and Turkey.
- Liver exchange can have two benefits:
 - (1) It can increase the number of transplants.
 - (2) It can increase donor safety through an increased share of left-lobe transplants.

Living-Donor Liver Exchange

- Liver exchange differs from kidney exchange in three key ways:
 - (1) The lack of tissue-type incompatibility,
 - (2) the presence of size incompatibility, and most notably
 - (3) through two different transplant technologies: left-lobe transplantation and right-lobe transplantation.
- In the absence of size incompatibility the scope for liver exchange would be very limited: The only viable exchange would involve
 - a blood-type A patient with a blood-type B donor and
 - a blood-type B patient with a blood-type A donor.

Liver Exchange Model: Two Patient/Donor Sizes

- $\underbrace{\{O, A, B, AB\}}_{\mathcal{B}} \times \underbrace{\{I, s\}}_{\mathcal{S}}$: Set of individual types
- Initial focus: Left-lobe-only liver transplants.
- Left-Lobe Compatibility: A patient can receive a left-lobe transplant from a donor if and only if
 - (1) the patient is blood-type compatible with the donor, and
 - (2) the donor is not smaller than the patient.

Liver Donation Partial Order \triangleright on $\mathcal{B} \times \mathcal{S}$

An Equivalent Representation

- Consider the following two partially ordered sets:
 - (1) The liver donation partial order \trianglerighteq on $\mathcal{B} \times \mathcal{S}$, and
 - (2) the standard partial order \geq over the corners of the three-dimensional cube $\{0,1\}^3$.

An Equivalent Representation

• Note that $(\mathcal{B} \times \mathcal{S}, \trianglerighteq)$ and $(\{0,1\}^3, \trianglerighteq)$ are order isomorphic, where the order isomorphism associates each individual type $\tau \in \mathcal{B} \times \mathcal{S}$ with the following vector $X \in \{0,1\}^3$:

$$egin{array}{lll} X_1 = 0 & & \Longleftrightarrow & au ext{ has the A antigen} \ X_2 = 0 & & \Longleftrightarrow & au ext{ has the B antigen} \ X_3 = 0 & & \Longleftrightarrow & au ext{ is small} \end{array}$$

• For notational convenience, we will work with the equivalent representation $(\{0,1\}^3, \geq)$.

Liver Exchange Problem

• The type of a patient-donor pair is represented through the individual types of its patient and donor, respectively, as $X - Y \in (\{0, 1\}^3)^2$.

Definition

A liver exchange problem is a list $\mathcal{E} = \{\mathcal{I}, \tau\}$ where $\mathcal{I} = \{1, 2, ..., I\}$ is a set of pairs, and for each $i \in \mathcal{I}$, $\tau(i) = X - Y$ is the type of pair i.

Left-Lobe-Only Direct Transplant & 2-way Exchange

• A pair i of type X - Y is left-lobe compatible, if

$$Y \ge X$$

• A (left-lobe-only 2-way) liver exchange is feasible between a pair i of type X-Y and a pair j of type V-W, if

$$Y \ge V$$
 and $W \ge X$

 A matching is a collection of mutually exclusive exchanges and direct transplants such that if a pair is left-lobe compatible, then it participates in a direct transplant.

Value of a Pair-Type

• Value of a pair type $\underbrace{X_1X_2X_3}_{X} - \underbrace{Y_1Y_2Y_3}_{Y}$ is defined as

$$v(X - Y) = \sum_{k=1}^{3} (Y_k - X_k)$$

Observation

In any liver exchange problem, the only types that could be part of an exchange are

$$X - Y \in (\{0,1\}^3)^2$$
 such that $X \ngeq Y$ and $Y \ngeq X$.

Therefore, only types of values -1, 0, or 1 can be part of an exchange.

Waste of a 2-way Exchange

• Waste of an exchange between a pair of type X-Y and a pair of type V-W is defined as

$$v(X - Y) + v(V - W)$$

• All feasible exchanges have non-negative waste.

Observation

All feasible exchanges are either **0-waste**, **1-waste**, or **2-waste**.

Left-Lobe-Only 2-Way Exchange: Feasibility

Two-Size Left-Lobe-Only Sequential Exchange Algorithm

Fix a priority order over pairs.

- Step 0. Clear all feasible direct transplants.
- Step 1. Clear **0-waste** exchanges following the given priority order.
- Step 2. Clear 1-waste exchanges following the given priority order.
- Step 3. Clear **2-waste** exchanges: Match the maximum number of value 1 types with each other, following the given priority order.

Algorithm Step 1: Clear **0-waste** Exchanges

Algorithm Step 2: Clear 1-waste Exchanges

Algorithm Step 3: Clear 2-waste Exchanges

Left-Lobe-Only 2-Way Exchange: Efficiency

Theorem

For any liver exchange problem, the two-size left-lobe-only sequential exchange algorithm maximizes the number of left-lobe-only 2-way exchanges.

Right-Lobe Donation & Preferences

Transplant Technologies:

- Left-lobe transplant: A patient can receive a left-lobe transplant from a blood-type compatible donor who is at least as large.
- Right-lobe transplant: A patient can receive a right-lobe transplant from a blood-type compatible donor of any size.

Pair Preferences:

- Left-lobe donation is preferred by any pair to right-lobe donation.
- A willing (w) pair prefers right-lobe donation to no-transplant.
- An unwilling (u) pair prefers no-transplant to right-lobe donation.

Right-Lobe Donation & Preferences

Willing preferences R_i^w :

Left-Lobe Direct Transplant Left-Lobe Exchange Right-Lobe Direct Transplant Right-Lobe Exchange Unwilling preferences R_i^{μ} :

Left-Lobe Direct Transplant

Left-Lobe Exchange

Right-Lobe Donation & Preferences

Willing preferences R_i^w :

Left-Lobe Direct Transplant Left-Lobe Exchange Right-Lobe Direct Transplant Right-Lobe Exchange

Unwilling preferences R_i^u :

Left-Lobe Direct Transplant Left-Lobe Exchange

Right-Lobe Donation & Incentives

- Our focus is on individual rational exchanges:
 - A left-lobe compatible pair does not join in any exchange, but only in a left-lobe direct transplant.
 - A right-lobe-only compatible pair participates in an exchange only if its donor donates her left lobe; otherwise,
 - it participates in a right-lobe direct transplant if it is willing, and
 - it receives the no-transplant option if unwilling.
- Willingness (or equivalently preferences) of a pair is private information.
- We inspect direct revelation mechanisms to elicit willingness.
- Pairs may have incentives to hide their willingness

Right-Lobe Donation & Incentives

- Our focus is on individual rational exchanges:
 - A left-lobe compatible pair does not join in any exchange, but only in a left-lobe direct transplant.
 - A right-lobe-only compatible pair participates in an exchange only if its donor donates her left lobe; otherwise,
 - it participates in a right-lobe direct transplant if it is willing, and
 - it receives the no-transplant option if unwilling.
- Willingness (or equivalently preferences) of a pair is private information.
- We inspect direct revelation mechanisms to elicit willingness.
- Pairs may have incentives to hide their willingness.

Transition to Right-Lobe Donation: Transformation

- Fix a willingness profile $R = (R_i)_{i \in \mathcal{I}} \in \{R_i^u, R_i^w\}^{|\mathcal{I}|}$
- A pair of type $X_1X_2X_3 Y_1Y_20w$ is treated as if it is of type $X_1X_2X_3 Y_1Y_21$ when it donates a right lobe.

We refer to this transition as a *transformation*.

Lemma (Individually Rational Matchings)

Given both transplant technologies, a pair type X-Y belongs to one of the following seven disjoint groups, based on direct transplant and exchange options available to its members:

- 0. $X > Y_1 Y_2 1$: cannot participate in an exchange or a direct transplant;
 - 1. $X \leq Y$: participates in a direct left-lobe transplant;
- II. $Y_3 = 0 \& X = Y_1 Y_2 1$: can only participate in a direct right-lobe transplant (if willing);
- III. $Y_3 = 1 \& X \not\geq Y \& X \not\leq Y$: can only participate in exchange, and only by donating a left lobe;
- IV. $X_3 = 0$, $Y_3 = 0$ & X > Y: can only participate in exchange, and only by donating a right lobe (if willing);
- V. $Y_3 = 0 \& X \not\geq Y \& X \not\leq Y_1Y_21$ (010 100, 100 010, 011 100, 101 010): can only participate in exchange, either by donating a left lobe or a right lobe (if willing); and
- VI. $X < Y_1Y_21 \& X \not\geq Y \& X \not\leq Y$: can participate in exchange by donating a left lobe, or receive a direct right-lobe transplant (if willing).

Left or Right-Lobe Exchange: Feasibility

Incentive Compatibility

- A mechanism is a systematic procedure that finds a matching for each willingness type profile reported.
- A mechanism is incentive compatible if it is a weakly dominant strategy for each pair to reveal its willingness truthfully.
- Since our mechanism will be based on a sequential algorithm, we will attain incentive compatibility by gradually transforming willing pairs as their left-lobe transplant prospects are fully exhausted.

Incentive Compatibility

- A mechanism is a systematic procedure that finds a matching for each willingness type profile reported.
- A mechanism is incentive compatible if it is a weakly dominant strategy for each pair to reveal its willingness truthfully.
- Since our mechanism will be based on a sequential algorithm, we will attain incentive compatibility by gradually transforming willing pairs as their left-lobe transplant prospects are fully exhausted.

- 0. No direct transplant/exchange \implies Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only

 | Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 ⇒ Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only $\implies {\sf Transform\ to\ donate\ a\ right\ lobe\ at\ the\ beginning\ if\ willing}$
- V. Exchange via left-lobe or right-lobe donation
 Gradually transform to donate a right lobe if willing,
 as left-lobe donation prospects are fully exhausted

- 0. No direct transplant/exchange \implies Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only

 | Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 ⇒ Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only $\implies {\sf Transform\ to\ donate\ a\ right\ lobe\ at\ the\ beginning\ if\ willing}$
- V. Exchange via left-lobe or right-lobe donation
 Gradually transform to donate a right lobe if willing,
 as left-lobe donation prospects are fully exhausted

- 0. No direct transplant/exchange \implies Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - → Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only

 ⇒ Irrelevant: Role in the algorithm unaffecter

 → Irrelevant: Role in the algorithm unaffecter
- IV. Exchange via right-lobe donation only

 ⇒ Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation

 ⇒ Gradually transform to donate a right lobe if willing,
 as left-lobe donation prospects are fully exhausted

- 0. No direct transplant/exchange \implies Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 ⇒ Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only

 ⇒ Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation

 ⇒ Gradually transform to donate a right lobe if willing,
 as left-lobe donation prospects are fully exhausted
- ⇒ Role in the algorithm unaffected until the end.

 If still unmatched, transform for a direct r-lobe transplant if willing

- 0. No direct transplant/exchange \implies Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - ⇒ Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - → Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - If still unmatched, transform for a direct r-lobe transplant if willing

4 D F 4 B F 4 B F F

- 0. No direct transplant/exchange \implies Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - \implies Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing
 - as left-lobe donation prospects are fully exhaus
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - \implies Role in the algorithm unaffected until the end
 - If still unmatched, transform for a direct r-lobe transplant if willing

4 D F 4 B F 4 B F F

- 0. No direct transplant/exchange \implies Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - \implies Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - → Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing
 - as left-lobe dollation prospects are fully exhau
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - Role in the algorithm unaffected until the end.
 - If still unmatched, transform for a direct r-lobe transplant if willing

- 0. No direct transplant/exchange ⇒ Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - \implies Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - \implies Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - → Gradually transform to donate a right lobe if willing,
 - as left-lobe donation prospects are fully exhausted
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - \implies Role in the algorithm unaffected until the end.
 - If still unmatched, transform for a direct r-lobe transplant if willing

4 D F 4 B F 4 B F F

- 0. No direct transplant/exchange ⇒ Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - ⇒ Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing,
 - off lobe denotion, or direct right lobe transplant
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - If still unmatched transform for a direct r-lobe transplant if v

- 0. No direct transplant/exchange ⇒ Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - ⇒ Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing,
 as left-lobe donation prospects are fully exhausted
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - ⇒ Role in the algorithm unaffected until the end
 - If still unmatched, transform for a direct r-lobe transplant if willing

- 0. No direct transplant/exchange ⇒ Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - ⇒ Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing,
 as left-lobe donation prospects are fully exhausted
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - \implies Role in the algorithm unaffected until the end.
 - If still unmatched, transform for a direct r-lobe transplant if willing

4 D F 4 B F 4 B F F

- 0. No direct transplant/exchange ⇒ Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - \implies Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing, as left-lobe donation prospects are fully exhausted
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - Role in the algorithm unaffected until the end.
 - If still unmatched, transform for a direct r-lobe transplant if willing

- 0. No direct transplant/exchange ⇒ Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - ⇒ Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing, as left-lobe donation prospects are fully exhausted
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - ⇒ Role in the algorithm unaffected until the end.

 If still unmatched, transform for a direct r-lobe transplant if willing

- 0. No direct transplant/exchange ⇒ Irrelevant: Remains w/o transplant
- I. Direct left-lobe transplant only
 - ⇒ Irrelevant: Direct I-lobe transplant at the beginning
- II. Direct right-lobe transplant only
 - \implies Transform for a direct r-lobe transplant at the beginning if willing
- III. Exchange via left-lobe donation only
 - ⇒ Irrelevant: Role in the algorithm unaffected
- IV. Exchange via right-lobe donation only
 - \implies Transform to donate a right lobe at the beginning if willing
- V. Exchange via left-lobe or right-lobe donation
 - ⇒ Gradually transform to donate a right lobe if willing, as left-lobe donation prospects are fully exhausted
- VI. Exchange via left-lobe donation, or direct right-lobe transplant
 - ⇒ Role in the algorithm unaffected until the end.

 If still unmatched, transform for a direct r-lobe transplant if willing

Pareto Efficiency

- Insight from left-lobe-only exchange: Clear 0-waste, 1-waste, and then 2-waste exchanges, in this order, for efficiency.
- Build on the same insight, but integrating with our strategy for incentive compatibility.
- Pareto efficiency no longer implies transplant maximality.
 Indeed:

Proposition

There is no incentive-compatible mechanism that maximizes

- 1. the number of transplants, or even
- 2. the number of left-lobe transplants.

Pareto Efficiency

- Insight from left-lobe-only exchange: Clear 0-waste, 1-waste, and then 2-waste exchanges, in this order, for efficiency.
- Build on the same insight, but integrating with our strategy for incentive compatibility.
- Pareto efficiency no longer implies transplant maximality.

Proposition

There is no incentive-compatible mechanism that maximizes

- 1. the number of transplants, or even
- 2. the number of left-lobe transplants.

Pareto Efficiency

- Insight from left-lobe-only exchange: Clear 0-waste, 1-waste, and then 2-waste exchanges, in this order, for efficiency.
- Build on the same insight, but integrating with our strategy for incentive compatibility.
- Pareto efficiency no longer implies transplant maximality.
 Indeed:

Proposition

There is no incentive-compatible mechanism that maximizes

- 1. the number of transplants, or even
- 2. the number of left-lobe transplants.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

Clear **0-waste** exchanges following the given priority order

At least one of Category V types 010 - 100 and 100 - 010 is fully depleted. Assume wlog type 100 - 010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type U10 100w pairs.

 No exchange remains for Category V type

Clear all remaining exchanges of Category V type 101-010w

- Transform type 011 100w and type 101 010w pairs
- Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order.
 - Step 3. Optimally clear 2-waste exchanges.
 - Step 4. Direct transplant each remaining Category VI w pair_

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

Clear **0-waste** exchanges following the given priority order

At least one of Category V types 010-100 and 100-010 is fully depleted. Assume wlog type 100-010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010-100w.
- Step 2b. Transform type 010-100w pairs.

No exchange remains for Category V type 011 - 100w.

Clear all remaining exchanges of Category V type 101 - 010w

- Step 2c. Transform type 011 100w and type 101 010w pairs.
- Step 2d. Clear **1-waste** exchanges following the given priority order
- Step 3. Optimally clear 2-waste exchanges.
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

Clear **0-waste** exchanges following the given priority order.

At least one of Category V types 010 - 100 and 100 - 010 is fully depleted. Assume wlog type 100 - 010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010-100w.
- No exchange remains for Category V type 011-100w.
- Step 2c. Transform type 011 100w and type 101 010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order
 - Step 3. Optimally clear 2-waste exchanges
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.
 Clear **0-waste** exchanges following the given priority order.

At least one of Category V types 010 - 100 and 100 - 010 is fully depleted. Assume wlog type 100 - 010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010-100w.
- Step 2b. Transform type 010 100w pairs.

 No exchange remains for Category V type 011 100w.

 Clear all remaining exchanges of Category V type 101 010w.
- Step 2c. Transform type 011-100w and type 101-010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order
 - Step 3. Optimally clear **2-waste** exchanges.
 - Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

 Clear **0-waste** exchanges following the given priority order.

At least one of Category V types 010-100 and 100-010 is fully depleted. Assume wlog type 100-010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010-100w.
- Step 2b. Transform type 010 100w pairs.

 No exchange remains for Category V type 011 100w.

 Clear all remaining exchanges of Category V type 101 010w.
- Step 2c. Transform type 011 100w and type 101 010w pairs.
- Step 2d. Clear 1-waste exchanges following the given priority order.
- Step 3. Optimally clear 2-waste exchanges.
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

 Clear **0-waste** exchanges following the given priority order.

At least one of Category V types 010 - 100 and 100 - 010 is fully depleted. Assume wlog type 100 - 010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type 010 100w pairs.

No exchange remains for Category V type 011 - 100w.

Clear all remaining exchanges of Category V type 101 - 010w

- Step 2c. Transform type 011 100w and type 101 010w pairs.
 - Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear **1-waste** exchanges following the given priority order.
- Step 3. Optimally clear 2-waste exchanges.
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

 Clear **0-waste** exchanges following the given priority order.

At least one of Category V types 010 - 100 and 100 - 010 is fully depleted. Assume wlog type 100 - 010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010 100w.
- No exchange remains for Category V type 011 100w.

 Clear all remaining exchanges of Category V type 101 010w.
- Step 2c. Transform type 011-100w and type 101-010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order
 - Step 3. Optimally clear 2-waste exchanges.
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

 Clear **0-waste** exchanges following the given priority order.

At least one of Category V types 010 - 100 and 100 - 010 is fully depleted. Assume wlog type 100 - 010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type 010 100w pairs.

No exchange remains for Category V type 011 - 100w. Clear all remaining exchanges of Category V type 101 - 010v

- Step 2c. Transform type 011 100w and type 101 010w pairs.
 - Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear **1-waste** exchanges following the given priority order
- Step 3. Optimally clear 2-waste exchanges.
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.

 Clear **0-waste** exchanges following the given priority order.

 At least one of Category V types 010 100 and 100 010 is f

At least one of Category V types 010-100 and 100-010 is fully depleted. Assume wlog type 100-010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type 010-100w pairs. No exchange remains for Category V type 011-100w. Clear all remaining exchanges of Category V type 101-010w.
- Step 2c. Transform type 011-100w and type 101-010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order.
- Step 3. Optimally clear 2-waste exchanges.
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.
 Clear 0-waste exchanges following the given priority order.
 At least one of Category V types 010 100 and 100 010 is fully depleted. Assume wlog type 100 010 pairs are depleted.
- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type 010-100w pairs. No exchange remains for Category V type 011-100w. Clear all remaining exchanges of Category V type 101-010w.
- Step 2c. Transform type 011-100w and type 101-010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order
- Step 3. Optimally clear 2-waste exchanges.
- Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs. Clear **0-waste** exchanges following the given priority order. At least one of Category V types 010 - 100 and 100 - 010 is fully depleted. Assume wlog type 100 - 010 pairs are depleted.
- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type 010 100w pairs. No exchange remains for Category V type 011 - 100w. Clear all remaining exchanges of Category V type 101 - 010w.
- Step 2c. Transform type 011 100w and type 101 010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear **1-waste** exchanges following the given priority order.

 - (周) (日) (日) 日

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Transform Category IV w pairs.
 Clear 0-waste exchanges following the given priority order.
 At least one of Category V types 010 100 and 100 010 is fully depleted. Assume wlog type 100 010 pairs are depleted.
- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type 010-100w pairs.

 No exchange remains for Category V type 011-100w.

 Clear all remaining exchanges of Category V type 101-010w.
- Step 2c. Transform type 011 100w and type 101 010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order.
 - Step 3. Optimally clear **2-waste** exchanges.
 - Step 4. Direct transplant each remaining Category VI w pair.

Fix a priority order over pairs.

- Step 0. Direct transplant each Category I and Category II w pair.
- Step 1. Transform Category IV w pairs.
 Clear 0-waste exchanges following the given priority order.
 At least one of Category V types 010 100 and 100 010 is fully

depleted. Assume wlog type 100 – 010 pairs are depleted.

- Step 2a. Clear all remaining exchanges of type 010 100w.
- Step 2b. Transform type 010-100w pairs.

 No exchange remains for Category V type 011-100w.

 Clear all remaining exchanges of Category V type 101-010w.
- Step 2c. Transform type 011 100w and type 101 010w pairs. Clear the newly formed **0-waste** exchanges.
- Step 2d. Clear 1-waste exchanges following the given priority order.
 - Step 3. Optimally clear **2-waste** exchanges.
 - Step 4. Direct transplant each remaining Category VI w pair.

Algorithm Step 1:

Algorithm Step 2a:

Algorithm Step 2b:

Algorithm Step 2c:

Algorithm Step 2d:

Algorithm Step 3:

Efficiency & Incentive Compatibility

Theorem

The left or right-lobe sequential exchange mechanism is individually rational, Pareto-efficient, and incentive compatible.

Generalized Model: Multiple Individual Sizes

- $S = \{0, 1, ..., S 1\}$: The set of possible patient/donor sizes
- Individual types: $X, Y \in \{0, 1\} \times \{0, 1\} \times \mathcal{S}$
- Pair types: $X Y \in (\{0, 1\}^2 \times S)^2$
- Right-lobe donation function: A non-decreasing function $\rho: \mathcal{S} \to \mathcal{S}$ such that $\rho(s) > s$ for all $s \in \mathcal{S} \setminus \{S-1\}$
 - A donor of size s size can donate his right lobe to a blood-type compatible patient of any size $s' \leq \rho(s)$.
- Category V pairs: X Y such that $X \not\geq Y \& X \not\leq Y_1 Y_2 \rho(Y_3)$

Difficulties with Generalization

- Sequentially committing to an exchange may compromise efficiency, even for left-lobe-only exchange.
- When right-lobe donation is possible, the transformation order of Category V willing pairs require further analysis.

- We will rely on a priority approach, based on matchability arguments.
- To maintain IC, it is plausible to transform a Category V pair after its left-lobe matchability options are exhausted.

But how does transformation of Category V pairs affect the matchability options of other Category V pairs?

Definition

Define the following precedence digraph on the set of Category V pair types, where for any Category V pair types X-Y and U-V:

$$X - Y \longrightarrow U - V \iff X \leq V, \ U \nleq Y \& U \leq \rho(Y).$$

If $X - Y \longrightarrow U - V$, we say that X - Y precedes U - V

- We will rely on a priority approach, based on matchability arguments.
- To maintain IC, it is plausible to transform a Category V pair after its left-lobe matchability options are exhausted.

But how does transformation of Category V pairs affect the matchability options of other Category V pairs?

Definition

Define the following precedence digraph on the set of Category V pair types, where for any Category V pair types X-Y and U-V:

$$X - Y \longrightarrow U - V \iff X \leq V, \ U \nleq Y \& U \leq \rho(Y).$$

If $X - Y \longrightarrow U - V$, we say that X - Y precedes U - V

- We will rely on a priority approach, based on matchability arguments.
- To maintain IC, it is plausible to transform a Category V pair after its left-lobe matchability options are exhausted.

But how does transformation of Category V pairs affect the matchability options of other Category V pairs?

Definition

Define the following precedence digraph on the set of Category V pair types, where for any Category V pair types X - Y and U - V:

$$X - Y \longrightarrow U - V \iff X \leq V, \ U \nleq Y \& U \leq \rho(Y).$$

If $X - Y \longrightarrow U - V$, we say that X - Y precedes U - V.

Precedence Digaph: 2 Sizes

Precedence Digaph: 3 Sizes

Lemma (from graph theory)

Given an acyclic digraph, there exists a linear order of all nodes, known as a topological order, L, that is consistent with the digraph:

$$x \rightarrow y \implies xLy$$

Lemma

The precedence digraph on Category V pair types is acyclic.

Thus, a topological order of Category V pair types, as well as a topological order of all Category V pairs exist.

The latter can be used as a priority order over transformations.

Lemma (from graph theory)

Given an acyclic digraph, there exists a linear order of all nodes, known as a topological order, L, that is consistent with the digraph:

$$x \rightarrow y \implies xLy$$

Lemma

The precedence digraph on Category V pair types is acyclic.

Thus, a topological order of Category V pair types, as well as a topological order of all Category V pairs exist.

The latter can be used as a priority order over transformations.

Lemma (from graph theory)

Given an acyclic digraph, there exists a linear order of all nodes, known as a topological order, L, that is consistent with the digraph:

$$x \rightarrow y \implies xLy$$

Lemma

The precedence digraph on Category V pair types is acyclic.

Thus, a topological order of Category V pair types, as well as a topological order of all Category V pairs exist.

The latter can be used as a priority order over transformations.

Precedence-Order Induced Priority Mechanism

Fix a topological order over Category V pairs as $i_1, ..., i_K$ and a priority order over all pairs. Given a willingness profile R:

Step 0. Direct transplant Category I and Category III w pairs. Transform Category IV w pairs.

Step 1. Let \mathcal{I}^0 be the set of remaining pairs, G^0 be the current compatibility graph. Inductive:

Step 1.k. If next Category V Pair i_k together with \mathcal{I}^{k-1} are matchable in G^{k-1} , then $\mathcal{I}^k := \mathcal{I}^{k-1} \cup \{i_k\}, \ G^k := G^{k-1}$.

Otherwise, set $\mathcal{I}^{\kappa} := \mathcal{I}^{\kappa-1}$, and if i_k is willing, transform i_k to obtain a new compatibility graph G^k from G^{k-1} .

Precedence-Order Induced Priority Mechanism

Fix a topological order over Category V pairs as $i_1, ..., i_K$ and a priority order over all pairs. Given a willingness profile R:

Step 0. Direct transplant Category I and Category III w pairs. Transform Category IV w pairs.

Step 1. Let \mathcal{I}^0 be the set of remaining pairs, G^0 be the current compatibility graph. Inductive:

Step 1.k. If next Category V Pair i_k together with \mathcal{I}^{k-1} are matchable in G^{k-1} , then $\mathcal{I}^k := \mathcal{I}^{k-1} \cup \{i_k\}$, $G^k := G^{k-1}$. Otherwise, set $\mathcal{I}^k := \mathcal{I}^{k-1}$, and if i_k is willing, transform i_k to obtain a

Precedence-Order Induced Priority Mechanism

Fix a topological order over Category V pairs as $i_1, ..., i_K$ and a priority order over all pairs. Given a willingness profile R:

Step 0. Direct transplant Category I and Category III w pairs. Transform Category IV w pairs.

Step 1. Let \mathcal{I}^0 be the set of remaining pairs, G^0 be the current compatibility graph. Inductive:

Step 1.k. If next Category V Pair i_k together with \mathcal{I}^{k-1} are matchable in G^{k-1} , then $\mathcal{I}^k := \mathcal{I}^{k-1} \cup \{i_k\}$, $G^k := G^{k-1}$.

Otherwise, set $\mathcal{I}^k := \mathcal{I}^{k-1}$, and if i_k is willing, transform i_k to obtain a new compatibility graph G^k from G^{k-1} .

Step 2.n. If next pair j_n together with $\mathcal{I}^{K+(n-1)}$ are matchable in G^K , then let $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)} \cup \{j_n\}$. Otherwise, set $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)}$

Step 2.n. If next pair j_n together with $\mathcal{I}^{K+(n-1)}$ are matchable in G^K , then let $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)} \cup \{j_n\}$. Otherwise, set $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)}$.

Step 2.n. If next pair j_n together with $\mathcal{I}^{K+(n-1)}$ are matchable in G^K , then let $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)} \cup \{j_n\}$. Otherwise, set $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)}$.

Step 2.n. If next pair j_n together with $\mathcal{I}^{K+(n-1)}$ are matchable in G^K , then let $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)} \cup \{j_n\}$. Otherwise, set $\mathcal{I}^{K+n} := \mathcal{I}^{K+(n-1)}$.

Theorem

The precedence-order induced priority mechanism satisfies:

- individual rationality,
- Pareto efficiency, and
- incentive compatibility.

Intuition of the Proof.

Individual rationality: By construction.

Pareto efficiency: Obtained by following

- topological order for Category V pairs, and
- e priority order for remaining pairs and transformed Category V pairs.

Incentive compatibility: Acyclicity of the precedence digraph implies that transformation a willing Category V pair i_k is independent of the willingness types of its lower-prioritized "graph neighbors." Thus, they cannot affect how i_k is matched by manipulating their own willingness types.

Intuition of the Proof.

Individual rationality: By construction.

Pareto efficiency: Obtained by following

- topological order for Category V pairs, and
- 2 priority order for remaining pairs and transformed Category V pairs.

Incentive compatibility: Acyclicity of the precedence digraph implies that transformation a willing Category V pair i_k is independent of the willingness types of its lower-prioritized "graph neighbors." Thus, they cannot affect how i_k is matched by manipulating their own willingness types.

Intuition of the Proof.

Individual rationality: By construction.

Pareto efficiency: Obtained by following

- 1 topological order for Category V pairs, and
- priority order for remaining pairs and transformed Category V pairs.

Incentive compatibility: Acyclicity of the precedence digraph implies that transformation a willing Category V pair i_k is independent of the willingness types of its lower-prioritized "graph neighbors."

Thus, they cannot affect how i_k is matched by manipulating their own willingness types.

Simulations

- Using South Korean population characteristics for I = 100
- % of left-lobe transplants higher under IR&PE&IC than no exchange
- IR&PE&IC generates 44%-34% more transplants than no exchange

Conclusion

- We model living-donor liver exchange as a market design problem.
 Information/incentive problems are modeled and solved through a PE + IC mechanism.
- Size incompatibility increases the benefit from exchange, more gains plausible with respect to kidney exchange.
- Off-the-shelf-implementable mechanism in Middle East and East Asia: Liver transplants are more complex, two-way may be the way to start the exchange.
- Implications for matching theory in general: A new class of bilateral exchange mechanisms for n-dimensional vector partial-order induced weak preferences:
 - Other examples: vacation house exchanges, time/favor exchanges
 - Two-size model with three dimensions is of independent interest: Induces a fully-symmetric model where greedy mechanism design is possible.