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APPENDIX B: DYNAMIC SIMULATIONS

IN THE DYNAMIC SIMULATIONS, PATIENTS AND THEIR DONORS ARRIVE over time and
remain in the population until they are matched through exchange. We run statically op-
timal exchange algorithms once in each period.25 In each simulation, we generate S = 500
such populations and report the averages and sample standard errors of the simulation
statistics.

B.1. Dynamic Simulations for Lung Exchange

In the dynamic lung-exchange simulations, we consider 200 triples arriving over 20 pe-
riods at a uniform rate of 10 triples per period. This time horizon roughly corresponds to
more than 1 year of Japanese patient arrival, when exchanges are run once about every 3
weeks. We only consider the 2-way and 2&3-way exchange regimes.

Based on the 2&3-way exchange simulation results reported in Table V, we can increase
the number of living-donor transplants by 190%, thus nearly tripling them. This increase
corresponds to 24% of all triples in the population. Even the logistically simpler 2-way
exchange technology has a potential to increase the number of living-donor transplants
by 125%.

B.2. Dynamic Simulations for Dual-Graft Liver Exchange

For dual-graft liver exchange, we consider 500 triples arriving over 20 periods at a uni-
form rate of 25 triples per period. In each period, we follow the same four-step transplan-
tation scenario we used for the static simulations. The unmatched triples remain in the
patient population waiting for the next period.26
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M. Utku Ünver: unver@bc.edu
25Moreover, among the optimal matchings, we choose a random one rather than using a priority rule to

choose whom to match now and whom to leave to future runs. The number of patients who can be matched
dynamically can be further improved using dynamic optimization. For example, see Ünver (2010) for such an
approach for kidney exchanges.

26Roughly, a dynamic simulation corresponds to 3�5 months in real time and the exchange is run once
every 5–6 days. This is a very crude mapping that relies on our specific patient and paired donor generation
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TABLE V

DYNAMIC LUNG-EXCHANGE SIMULATIONS

Exchange Tech.
Population Direct
Size Donation 2-way 2& 3-way

200 24.846 31.2 47.976
(in 20 periods) (4.5795) (6.6568) (8.7166)

The dynamic simulation results are reported in Table VI. Under 2&3-way exchanges,
the number of transplants via 2-donor exchange is only 15% short of those from 2-donor
direct transplants, but 25% more than those from 1-donor exchanges. Hence dual-graft
liver exchange is a viable modality under 2&3-way exchanges. With only 2-way exchanges,
the number of transplants via 2-donor exchange is 39% less than those from 2-donor
direct transplantation, but still 7% more than those from 1-donor exchange. In summary,
dual-graft liver exchange increases the number of living-donor liver transplants by nearly
30% when 2&3-way exchanges are possible, and by more than 22% when only 2-way
exchanges are possible.

APPENDIX C: SIMULTANEOUS LIVER-KIDNEY TRANSPLANTATION

For end-stage liver disease patients who also suffer from kidney failure, simultaneous
liver-kidney transplantation (SLK) is a common procedure. In 2015, 626 patients received
SLK transplants from deceased donors in the United States. Transplanting a deceased-
donor kidney to a (primarily liver) patient who lacks the highest priority on the kidney
waitlist is a controversial topic, and this practice is actively debated in the U.S. (Nadim
et al. (2012)). SLK transplants from living donors are not common in the U.S. due to
the low rate of living-donor liver donation. In contrast, living donation for both livers
and kidneys is the norm in most Asian countries, such as South Korea, and countries
with predominantly Muslim populations, such as Turkey. SLK transplantation from living
donors is reported in the literature for these two countries, as well as for Azerbaijan and
India (see Lee et al. (2011), Astarcioglu et al. (2003), Ahmadov et al. (2014), Aneja and
Upwar (2011), respectively).

TABLE VI

DYNAMIC DUAL-GRAFT LIVER-EXCHANGE SIMULATIONS

Population 1-Donor 1-Donor 2-Donor 2-Donor
Size Direct Exchange Direct Exchange

500 119.83 2-way 58.284 102.24 62.296
(in 20 periods) (10.016) (9.6765) (10.05) (9.1608)

2&3-way 68.034 100.47 85.632
(11.494) (10.063) (12.058)

assumptions. It is obtained as follows: Under the current patient and donor generation scenario, a bit more
than half of the patients will have at least one single-graft left- or right-lobe compatible donor or dual-graft
compatible two donors (with more than 30% remnant donor liver). There are around 850 direct transplants
a year in Korea from live donors, meaning that 1700 patients and their paired donors arrive a year. Then 500
patients arrive in roughly 3�5 months.
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For SLK exchange, the analytical model we presented in Section 4 will be an approxima-
tion, since, in addition to the blood-type compatibility requirement of solid organs, kidney
transplantation requires tissue-type compatibility and (single-graft) liver transplantation
requires size compatibility.

C.1. Simulations for Simultaneous Liver-Kidney Exchange

As our last application, we consider simulations for simultaneous liver-kidney (SLK)
exchange. We use the underlying parameters reported in Table III in the main text and
Table VII here based on (mostly) Korean characteristics. In addition to an isolated SLK
exchange, we also consider a possible integration of the SLK exchange with kidney-alone
(KA) and liver-alone (LA) exchanges.

Following the South Korean statistics reported in these tables, we assume that the num-
ber of liver patients (LA and SLK) is 9

11 th of the number of kidney patients. We failed to
find data on the percentage of South Korean liver patients who are in need of a SLK trans-
plantation.27 Based on data from the U.S., we consider two treatments where 7�5% and
15% of all liver patients are SLK candidates, respectively. We interpret these numbers as
lower and upper bounds for SLK diagnosis prevalence.28

TABLE VII

SUMMARY STATISTICS FOR
SIMULTANEOUS-LIVER-KIDNEY-EXCHANGE SIMULATIONS
FROM THE SOUTH KOREAN KIDNEY PATIENTS/DONORSa

Live Kidney Donation Recipients in 2010–2014
(55% Among Liver and Kidney)

Female 2555 (53.38%)
Male 2231 (46.62%)

Total 4786 (100.0%)

Live Kidney Donors in 2010–2014

Female 1922 (41.16%)
Male 2864 (59.84%)

Total 4786 (100.0%)

Patient PRA Distribution

Range: 0–10% 70.19%
Range: 11–80% 20.00%
Range: 81–100% 9.81%

aThe patient PRA distribution is obtained from American UNOS
data as we could not find detailed Korean PRA distributions. The trans-
plant data were obtained from the Korean Network for Organ Sharing
(KONOS) 2014 Annual Report, retrieved from https://www.konos.go.kr/
konosis/index.jsp on 04/10/2016.

27The gender of an SLK patient is determined using a Bernoulli distribution with a female probability as
a weighted average of liver and kidney patients’ probabilities reported in Tables III and VII with the ratio of
weights 9 to 11.

28In the United States, according to the SLK transplant numbers given in Formica et al. (2016), 7�5% of
all liver transplants involved SLK transplants between 2011 and 2015. On the other hand, Eason et al. (2008)

https://www.konos.go.kr/konosis/index.jsp
https://www.konos.go.kr/konosis/index.jsp
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We generate the patients and their attached donors as follows: We assume that each
KA patient is paired with a single kidney donor, each LA patient is paired with a single
liver donor, and each SLK patient is paired with one liver and one kidney donor. A kidney
donor is deemed compatible with a kidney patient (KA or SLK) if he is blood-type and
tissue-type compatible with the patient.29 Following the methodology in Section 3.2, a
liver donor is deemed compatible with a liver patient (LA or SLK) if he is blood-type
compatible and his liver’s left lobe volume is at least 40% of the patient’s liver volume.
An SLK patient participates in exchange if any one of her two donors is incompatible,
and a KA or LA patient participates in exchange if her only donor is incompatible.

We consider two scenarios, referred to as “isolated” and “integrated,” respectively, for
our SLK simulations. For both scenarios, a kidney donor can be exchanged only with
another kidney donor, and a liver donor can be exchanged only with another liver donor.

In the “isolated” scenario, we simulate the three exchange programs separately for each
patient group, LA, KA, and SLK, using the 2-way exchange technology. Note that a 2-way
exchange for the SLK group involves four donors, while a 2-way exchange for other groups
involves two donors.

In the “integrated” scenario, we simulate a single exchange program to assess the po-
tential welfare gains from a unification of individual exchange programs. For our simula-
tions, we use the smallest meaningful exchange sizes that would fully integrate KA and LA
with SLK. As such, we allow for any feasible 2-way exchange in our integrated scenario
along with 3-way exchanges between one LA, one KA, and one SLK patient.30

We consider population sizes of n = 250, 500, and 1000 for our simulations, reported in
Table VIII. For a population of n = 1000 and assuming 15% of liver patients are in need
of SLK transplantation, the integrated exchange increases the number of SLK transplants
over those from direct donation by 290%, almost quadrupling the number of SLK trans-
plants. More than 20% of all SLK patients receive liver and kidney transplants through
exchange in this case. For the same parameters, this percentage reduces to 5�7% under
the isolated scenario. Equivalently, the number of SLK transplants from an isolated SLK
exchange is equal to 81% of the SLK transplants from direct transplantation. As such,
integration of SLK with KA and LA increases transplants from exchange by about 260%
for the SLK population.31

When 7�5% of all liver patients are in need of SLK transplantation, integration be-
comes even more essential for the SLK patients. For a population of n = 1000, exchange
increases the number of SLK transplants by 55% under the isolated scenario. In contrast,
exchange increases the number of SLK transplants by more than 300% under the inte-
grated scenario. Hence, integration increases the number of transplants from exchange
by almost 450%, matching 21% of all SLK patients.

reported that only 73% of all SLK candidates received SLK transplants in 2006 and 2007 in the U.S. Moreover,
Slack, Yeoman, and Wendon (2010) reported that 47% of liver transplant patients develop either acute kidney
injury (20%) or chronic kidney disease (27%), and patients from both of these categories could be suitable for
SLK transplants.

29For checking tissue-type compatibility, we generate a statistic known as panel reactive antibody (PRA) for
each patient. PRA determines with what percentage of the general population the patient would have tissue-
type incompatibility. The PRA distribution used in our simulations is reported in Table VII. Therefore, given
the PRA value of a patient, we randomly determine whether a donor is tissue-type compatible with the patient.

30We are not the first ones to propose a combined liver-and-kidney exchange. Dickerson and Sandholm
(2014) showed that higher efficiency can be obtained by combining kidney exchange and liver exchange if
patients are allowed to exchange a kidney donor for a liver donor. Such an exchange, however, is quite unlikely
given the very different risks associated with living-donor kidney donation and living-donor liver donation.

31The contribution of integration is modest for other groups with an increase of 4% for KA transplants from
exchange, and an increase of 4�5% for LA transplants from exchange.
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TABLE VIII

SIMULTANEOUS LIVER-KIDNEY EXCHANGE SIMULATIONS FOR n= 250�500�1000 PATIENTS

Exchange Regime
Population Direct

Sizes Donation Isolated IntegratedSLK Patient
Fraction in
Liver Pool KA SLK LA KA SLK LA KA SLK LA KA SLK LA

7.5% 133 9 108 61.114 0.58 17.128 30.776 0.128 8.332 31.25 1.126 8.622
n= 250 (5.944) (0.70753) (3.756) (6.7362) (0.49) (3.91) (6.7675) (1.008) (3.8999)

267 18 215 121.3 1.29 33.786 70.168 0.452 21.356 71.508 3.11 22.012
n= 500 (8.3792) (1.1119) (5.3514) (10.475) (0.91945) (6.0982) (10.48 ) (1.6283) (6.0243)

535 35 430 244.09 2.426 67.982 151.34 1.352 53.26 154.48 7.468 54.264
n= 1000 (11.783) (1.5222) (7.8642) (14.841) (1.5128) (9.5101) (14.919) (2.4366) (9.5771)

15% 129 18 103 59.288 1.168 16.364 29.64 0.464 7.812 30.55 2.186 8.434
n= 250 (5.9075) (1.0421) (3.5996) (6.6313) (0.9688) (3.7886) (6.7675) (1.4211) (3.7552)

259 36 205 117.64 2.566 32.254 67.916 1.352 20.052 70.266 5.782 21.466
n= 500 (8.3432) (1.5933) (5.2173) (10.416) (1.6546) (5.9837) (10.441) (2.2442) (5.9319)

518 72 410 236.23 5.076 64.874 146.18 4.108 50.084 152.17 14.74 52.376
n= 1000 (11.605) (2.2646) (7.5745) (14.758) (2.6883) (9.3406) (14.986) (3.5175) (9.3117)
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C.2. Dynamic Simulations for Simultaneous Liver-Kidney Exchange

For simultaneous liver-kidney exchange dynamic simulations, we consider a population
of n = 2000 patients arriving over 20 periods under the identical regimes of our static
simulations.32 Table IX reports the results of these simulations.

When 15% of all liver patients are in need of SLK transplants, most outcomes essen-
tially double with respect to the n = 1000 static simulations: For LA and SLK, the changes
are slightly more than 100%, while for KA, the changes are slightly less than 100%. The
increases for SLK patients are more substantial when 7�5% of all liver patients are in
need of SLK transplants: An integrated exchange can facilitate transplants for 25% of all
SLK patients, an overall increase of 360% with respect to SLK transplants from direct
donation.

APPENDIX D: THE SUBALGORITHM FOR ALGORITHM 2

In this section, we present a subalgorithm that solves the constrained optimization prob-
lem in Step 1 of the matching algorithm for 2-& 3-way exchanges. We define

κA := min
{
n(A−A−B)+ n(A−B −B)�n(B −O −A)

}
�

κB := min
{
n(B −B −A)+ n(B −A−A)�n(A−O −B)

}
�

We can equivalently restate Step 1 by strengthening constraint (∗) to be satisfied with
equality:

Carry out the 2- and 3-way exchanges in Figure 7 among A −A− B, A− B − B,
B − B − A, and B − A − A types to maximize the number of transplants subject to the
following constraints (∗∗):

1. Leave exactly a total of κA of A−A−B and A−B −B types unmatched.
2. Leave exactly a total of κB of B −B −A and B −A−A types unmatched.
Figure 11 summarizes the 2-and 3-way exchanges that may be carried out in Step 1

above. In the following discussion, we restrict attention to the types and exchanges rep-
resented in Figure 11. To satisfy the first part of constraint (∗∗), we can set aside any
combination lA of A − A − B types and mA of A − B − B types, where lA and mA are
integers satisfying

0 ≤ lA ≤ n(A−A−B)� 0 ≤mA ≤ n(A−B −B)� and lA +mA = κA� (1)

For any lA and mA satisfying Equation (1), the remaining number γA of B donors of A
patients is

γA = n(A−A−B)− lA + 2
[
n(A−B −B)−mA

]
� (2)

Let lA and l̄A [mA and m̄A] be the smallest and largest values of lA [mA] among (lA�mA)
pairs that satisfy Equation (1). Then, the possible number of remaining B donors of A
patients after satisfying the first part of condition (∗∗) is an integer interval [γ

A
� γ̄A],

where

γ
A

= n(A−A−B)− lA + 2
[
n(A−B −B)− m̄A

]
� and

γ̄A = n(A−A−B)− l̄A + 2
[
n(A−B −B)−mA

]
�

32This arrival rate roughly corresponds to 6 months of liver and kidney patients in South Korea with an
exchange carried out every 9 days.
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TABLE IX

DYNAMIC SIMULTANEOUS LIVER-KIDNEY EXCHANGE SIMULATIONS FOR n = 2000 PATIENTS

Exchange Regime
Population Direct

Sizes Donation Isolated IntegratedSLK Patient
Fraction in
Liver Pool KA SLK LA KA SLK LA KA SLK LA KA SLK LA

7.5% 1070 70 860 487.84 4.946 134.93 306.62 5.588 110.35 312.92 18.246 113.17
(in 20 periods) (15.948) (2.1071) (10.424) (18.95) (4.0752) (12.785) (19.141) (4.4835) (12.941)

15% 1036 144 820 472.38 10.072 128.75 284.24 10.688 105.29 291.01 28.478 106.85
(in 20 periods) (15.618) (3.0314) (10.151) (18.79) (4.2759) (12.462) (18.637) (4.6644) (12.12)
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FIGURE 11.—The exchanges in Step 1 of the 2-&3-way matching algorithm.

We can analogously define the integers lB, l̄B, mB, and m̄B, γ
B
, and γ̄B such that the possi-

ble number of remaining A donors of B patients that respect the second part of constraint
(∗∗) is an integer interval [γ

B
� γ̄B].

In the first step of the subalgorithm, we determine which combination of types to set
aside to satisfy constraint (∗∗). We will consider three cases depending on the relative
positions of the intervals [γ

A
� γ̄A] and [γ

B
� γ̄B].

SUBALGORITHM 1—Subalgorithm of the Sequential Matching Algorithm for 2- and
3-way Exchanges:

Step 1: We first determine γA and γB:
Case 1. “[γ

A
� γ̄A] ∩ [γ

B
� γ̄B] �= ∅”: Choose any γA = γB ∈ [γ

A
� γ̄A] ∩ [γ

B
� γ̄B].

Case 2. “γ̄A < γ
B
”:

Case 2.1. If n(A−A−B)− l̄A −[n(B−B−A)− lB] is positive and odd, and γ
A
< γ̄A,

then set γA = γ̄A − 1 and γB = γ
B
.

Case 2.2. Otherwise, set γA = γ̄A and γB = γ
B
.

Case 3. “γ̄B < γ
A

”: Symmetric to Case 2, interchanging the roles of A and B.
Then, we set aside lA many A−A−B’s and mA many A−B−B’s, where the integers

lA and mA are uniquely determined by Equations (1) and (2) to ensure that the remaining
number of B donors of A patients is γA. The integers lB and mB are determined analo-
gously.

Step 2: In two special cases explained below, the second step of the subalgorithm sets
aside one extra triple on top of those already set aside in Step 1.

Case 1. If γ̄A < γ
B
, n(A − A − B) − l̄A − [n(B − B − A) − lB] is positive and odd,

γ
A

= γ̄A, and n(B −B −A)− lB > 0, then set an extra B −B −A triple aside.
Case 2. If γ̄B < γ

A
, n(B − B − A) − l̄B − [n(A − A − B) − lA] is positive and odd,

γ
B

= γ̄B, and n(A−A−B)− lA > 0, then set an extra A−A−B triple aside.
Step 3: After having set the triples determined in Steps 1 and 2 of the subalgorithm

aside, we sequentially maximize three subsets of exchanges among the remaining triples
in Figure 11.

Step 3.1: Carry out the maximum number of 2-way exchanges between the A−A−B
and B −B −A types.

Step 3.2: Carry out the maximum number of 3-way exchanges consisting of two A−A−
B and one B −A−A triples, and those consisting of two B −B −A and one A−B −B
triple, among the remaining types.

Step 3.3: Carry out the maximum number of 2-way exchanges between the remaining
A−B −B and B −A−A types.

Figure 12 graphically illustrates the 2- and 3-way exchanges that are carried out at
Steps 3.1–3.3 of the subalgorithm.
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FIGURE 12.—Steps 3.1–3.3 of the subalgorithm.

PROPOSITION 1: The subalgorithm described above solves the constrained optimiza-
tion problem in Step 1 of the matching algorithm for 2-&3-way exchanges.

PROOF: Constraint (∗) is satisfied by construction, since in Step 1 of the subalgorithm,
γi is chosen from [γ

i
� γ̄i] for i =A�B. Below, we show optimality by considering different

cases.
Case 1. “[γ

A
� γ̄A] ∩ [γ

B
� γ̄B] �= ∅”: In this case, Step 1 of the subalgorithm sets γA = γB,

that is,

n(A−A−B)− lA +2
[
n(A−B−B)−mA

] = n(B−B−A)− lB +2
[
n(B−A−A)−mB

]
and no extra triple is set aside in Step 2. Note that the above equality implies that at the
end of Step 3.1 of the subalgorithm, the numbers of remaining A−A−B and B−B−A
triples are even (at least one being zero). So again, by the above equality, all triples that
are not set aside in Step 1 take part in 2- and 3-way exchanges by the end of Step 3 of the
subalgorithm. This implies optimality.

Case 2. “γ̄A < γ
B
, that is,

n(A−A−B)− l̄A + 2
[
n(A−B −B)−mA

]
< n(B −B −A)− lB + 2

[
n(B −A−A)− m̄B

]
”.

(3)

We next establish an upper bound on the number of triples with B patients that can par-
ticipate in 2- and 3-way exchanges. Suppose that pB many B−B−A triples and rB many
B−A−A triples can take part in 2- and 3-way exchanges while respecting condition (∗).
Since matching each B − B − A triple requires one B donor of an A patient„ matching
each B−A−A triple requires two B donors of A patients, and the maximum number of
B donors of A patients is γ̄A, we have the constraint

pB + 2rB ≤ γ̄A�

Note also that pB ≤ p̄B := n(B − B − A) − lB. Therefore, we cannot match any more
triples with B patients than the bound

p̄B + 1
2
(γ̄A − p̄B) = max

pB�rB∈R
pB + rB

s.t. pB + 2rB ≤ γ̄A

pB ≤ p̄B�

(4)
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Case 2.1. “n(A−A−B)− l̄A − [n(B−B−A)− lB] is positive and odd, and γ
A
< γ̄A”:

Note that γA = γ̄A − 1 and γB = γ
B

imply that lA = l̄A − 1, mA = mA + 1, lB = lB, and
mB = m̄B. So n(A−A−B)− lA −[n(B−B−A)− lB] is positive and even. Furthermore,
no extra triple is set aside in Step 2. Therefore, an even number of A−A−B types remain
unmatched at the end of Step 3.1. Also, by Equation (3),

n(A−A−B)− lA + 2
[
n(A−B −B)−mA

]
< n(B −B −A)− lB + 2

[
n(B −A−A)−mB

]
�

(5)

So all the A − B − B types available at the end of Step 3.1 take part in 3-way exchanges
with B − A − A types in Step 3.2, and there are enough remaining B − A − A types to
accommodate all A−B−B types in Step 3.3. Therefore, all triples with A donors that are
not set aside in Step 1 take part in 2- and 3-way exchanges in Step 3 of the subalgorithm.

We next show that it is impossible to match more triples with B patients while respecting
constraint (∗), which will prove optimality. Since in Case 2.1, γ̄A − p̄B is odd and γA =
γ̄A − 1, rounding down the upper bound in Equation (4) to the nearest integer gives

p̄B + 1
2
(γA − p̄B)�

Note that this is the number of triples with B patients who take part in 2- and 3-way
exchanges in Step 3 of the subalgorithm. (In Step 3.1, p̄B ≡ n(B − B − A) − lB many
B−B−A triples take part in 2-way exchanges; and in Steps 3.2 and 3.3, 1

2(γA − p̄B) many
B −A−A triples take part in 2- and 3-way exchanges.)

Case 2.2. We further break Case 2.2 into four subcases:
Case 2.2.1. “n(A−A−B)− l̄A − [n(B−B−A)− lB] is positive and odd, γ

A
= γ̄A, and

n(B −B −A)− lB > 0”:
Note that γA = γ̄A and γB = γ

B
imply that lA = l̄A, mA = mA, lB = lB, and mB = m̄B. So

n(A − A − B) − lA − [n(B − B − A) − lB] is positive and odd, and Equation (5) holds.
Since one more B − B − A triple is set aside in Step 2, an even number of A − A − B
types remain unmatched at the end of Step 3.1. By Equation (5), all triples with A donors
that are not set aside in Step 1 take part in 2- and 3-way exchanges in Step 3 of the
subalgorithm.

We next show that it is impossible to match more triples with B patients while respecting
constraint (∗), which will prove optimality. Since in this case, γ̄A − p̄B is odd and γA = γ̄A,
rounding down the upper bound in Equation (4) to the nearest integer gives

p̄B − 1 + 1
2
[
γA − (p̄B − 1)

]
�

Note that this is the number of triples with B patients who take part in 2- and 3-way
exchanges in Step 3 of the subalgorithm. (In Step 3.1, p̄B −1 ≡ n(B−B−A)− lB −1 many
B−B−A triples take part in 2-way exchanges; and in Steps 3.2 and 3.3, 1

2 [γA − (p̄B − 1)]
many B −A−A triples take part in 2- and 3-way exchanges.)

Case 2.2.2. “n(A−A−B)− l̄A − [n(B−B−A)− lB] is positive and odd, γ
A

= γ̄A, and
n(B −B −A)− lB = 0”:

Since n(B−B−A) ≥ l̄B ≥ lB and n(B−B−A)− lB = 0, we have l̄B = lB, which implies
that γ̄B = γ

B
. Since γ

A
= γ̄A and γ

B
= γ̄B in this case, the choices of γA and γB in Step 1
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of the subalgorithm correspond to the unique way of satisfying constraint (∗∗). That is,
γA = γ

A
= γ̄A and γB = γ

B
= γ̄B, lA = lA = l̄A, mA = mA = m̄A, lB = lB = ĪB, and mB =

mB = m̄B. Also, Equation (5) holds.
So n(A−A−B)− lA is positive and odd, and n(B−B−A)− lB = 0. Furthermore, no

extra triple is set aside in Step 2. Therefore, there are no matches in Step 3.1 and all of the
(odd number of) A−A−B triples are available in the beginning of Step 3.2. By Equation
(5), all but one of these A−A− B triples take part in 3-way exchanges with B −A−A
types in Step 3.2; and there are enough remaining B − A − A types to accommodate all
A−B −B types in Step 3.3. Therefore, all triples with A donors, except one A−A−B
triple, that are not set aside in Step 1 take part in 2- and 3-way exchanges in Step 3 of the
subalgorithm.

To see that it is not possible to match any more triples with A patients, remember that
in the current case the combination of triples that are set aside in Step 1 of the algorithm
is determined uniquely; and note that since there are no remaining B−B−A triples, the
A−A − B triples can only participate in 3-way exchanges with B −A −A triples. Each
such 3-way exchange requires exactly two A−A−B triples; therefore, it is impossible to
match all of the (odd number of) A−A−B triples.

We next show that it is impossible to match more triples with B patients while respecting
constraint (∗), which will prove optimality. Since in Case 2.2.2, γ̄A − p̄B is odd and γA =
γ̄A, rounding down the upper bound in Equation (4) to the nearest integer gives

p̄B + 1
2
[
(γA − 1)− p̄B

]
�

Note that this is the number of triples with B patients who take part in 2- and 3-way
exchanges in Step 3 of the subalgorithm. (In Step 3.1, p̄B ≡ n(B − B − A) − lB many
B−B−A triples take part in 2-way exchanges; and in Steps 3.2 and 3.3, 1

2 [(γA − 1)− p̄B]
many B −A−A triples take part in 2- and 3-way exchanges.)

Case 2.2.3. “n(A−A−B)− l̄A − [n(B −B −A)− lB] is positive and even”:
Note that γA = γ̄A and γB = γ

B
imply that lA = l̄A, mA = mA, lB = lB, and mB = m̄B. So

n(A − A − B) − lA − [n(B − B − A) − lB] is positive and even and Equation (5) holds.
Since no other triple is set aside in Step 2, an even number of A − A − B types remain
unmatched at the end of Step 3.1. By Equation (5), all triples with A donors that are not
set aside in Step 1 take part in 2- and 3-way exchanges in Step 3 of the subalgorithm.

We next show that it is impossible to match more triples with B patients while respecting
constraint (∗), which will prove optimality. Since in this case, γ̄A− p̄B is even and γA = γ̄A,
the upper bound in Equation (4) is integer valued:

p̄B + 1
2
[γA − p̄B]�

Note that this is the number of triples with B patients who take part in 2- and 3-way
exchanges in Step 3 of the subalgorithm. (In Step 3.1, p̄B ≡ n(B − B − A) − lB many
B−B−A triples take part in 2-way exchanges; and in Steps 3.2 and 3.3, 1

2(γA − p̄B) many
B −A−A triples take part in 2- and 3-way exchanges.)

Case 2.2.4. “n(A−A−B)− l̄A − [n(B −B −A)− lB] ≤ 0”:
Note that γA = γ̄A and γB = γ

B
imply that lA = l̄A, mA = mA, lB = lB, and mB = m̄B.

Also Equation (5) holds. Since no other triple is set aside in Step 2 and n(B−B−A)−lB ≥
n(A−A−B)− lA, all A−A−B triples are matched in Step 3.1. By Equation (5), there
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are sufficient remaining B − B − A and B − A − A triples to ensure that all A − B − B
triples take part in 2- and 3-way exchanges in Steps 3.2 and 3.3. So all triples with A
donors that are not set aside in Step 1 take part in 2- and 3-way exchanges in Step 3 of the
subalgorithm.

We next show that it is impossible to match more triples with B patients while respecting
constraint (∗) by considering three cases, which will prove optimality.

Suppose first that γ̄A − p̄B ≤ 0. Since matching each triple with a B patient requires at
least one B donor of an A patient and the maximum number of B donors of A patients is
γ̄A, we cannot match more triples with a B patient than γ̄B. Since in this case n(B − B −
A) − lB ≡ p̄B ≥ γ̄A = γA, the subalgorithm matches γ̄A many B − B − A triples in Steps
3.1 and 3.2, which achieves this upper bound.

Suppose next that γ̄A − p̄B is positive and even. Then, the upper bound in Equation (4)
is integer valued, and since γA = γ̄A, it can be written as

p̄B + 1
2
(γA − p̄B)�

Note that this is the number of triples with B patients who take part in 2- and 3-way
exchanges in Step 3 of the subalgorithm. (In Steps 3.1 and 3.2, p̄B ≡ n(B − B − A) − lB
many B −B −A triples take part in 2- and 3-way exchanges; and in Step 3.3, 1

2(γA − p̄B)
many B −A−A triples take part in 2-way exchanges.)

Suppose last that γ̄A − p̄B is positive and odd. Then, since γA = γ̄A, rounding down the
upper bound in Equation (4) to the nearest integer gives

p̄B − 1 + 1
2
[
γA − (p̄B − 1)

]
�

Note that this is the number of triples with B patients who take part in 2- and 3-way
exchanges in Step 3 of the subalgorithm. (In Steps 3.1 and 3.2, p̄B − 1 ≡ n(B −B −A)−
lB − 1 many B − B − A triples take part in 2- and 3-way exchanges; and in Step 3.3,
1
2 [γA − (p̄B − 1)] many B −A−A triples take part in 2-way exchanges.)

Case 3. “γ̄B < γ
A

”: Symmetric to Case 2, interchanging the roles of A and B. Q.E.D.

APPENDIX E: PROOF OF THEOREM 3 AND OTHER RESULTS
FOR UNRESTRICTED EXCHANGES

Before delving into the analysis, we introduce some new terminology. For a given ex-
change pool E , we refer to an exchange pool K ≤ E as a subpool of E . We fix a dual-donor
exchange pool E throughout the section. Given a subpool K, let DX[K] be the number of
X blood-type donors in K and PX[K] be the number of X blood-type patients in K. We also
use n(X −Y −Z)[K] to denote the number of X −Y −Z triples in K (while we omit the
arguments of these expressions if K = E). For a subpool K, by a slight abuse of notation,
let |K| be the total number of triples in K. Given a matching μ, we will sometimes denote
the subpool of triples matched through it also as μ, with a slight abuse of notation.

We denote with E the essential types:

E := {A−A−B�A−O −B�A−B −B�B −B −A�B −O −A�B −A−A}�
Recall that by Lemma 2, each exchange should have at least two pairs of two different

types in E, one with an A patient and one with a B patient. Let EE ≤ E be the subpool
with only essential-type triples.
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Also recall that by Lemma 5, the only types that can be a part of an optimal matching in
this setting besides the essential types are O−O−A and O−O−B, which are sufficiently
many by the long-run assumption. The following lemma will characterize the role of such
triples and reduce the problem to focus only on essential types in constructing an optimal
matching. This is a counterpart of Lemma 6 for unrestricted exchange sizes:

LEMMA 8: Suppose that E satisfies the long-run assumption and μ is an optimal matching
in the absence of any exchange-size constraints in the essential type subpool EE. Suppose
further that μ matches the maximum possible number of A−O −B and B −O −A triples
that can be matched in any matching in EE.

1. Then μ can be modified to obtain a matching ν such that n(A − O − B)[μ] + n(B −
O −A)[μ]-many O −O −A and O −O −B triples can be matched in addition to all triples
matched by μ.

2. Moreover, ν is an optimal matching of E in the absence of any exchange-size constraints.

PROOF: The first part of the lemma is easy to prove: Take any B−O−A or A−O−B
triple i matched in μ. Observe that as μ is a matching within essential types, the O donor
of i is necessarily donating to an A or a B patient in μ. If i’s O donor is donating to an
A patient, then take a triple j of type O − O − A, and otherwise take a triple j of type
O − O − B. Such triples (which are unmatched in μ) exist by the long-run assumption.
Modify μ as follows: Let i’s and j’s O donors donate to j’s patient and j’s non-O donor
donate to the patient i’s O donor was previously donating to in μ. Otherwise, do not
change any other donations in μ. We repeat the procedure for all B−O−A and A−O−B
triples matched in μ. Let ν be the matching obtained as a result of this procedure. It
matches n(A−O −B)[μ] + n(B −O −A)[μ]-many O −O −A and O −O −B triples.

For the second part of the lemma, we first prove a claim:

CLAIM: For any optimal matching ν′ of E , we can construct another matching μ′ involving
only the essential-type triples matched by ν′.

PROOF OF THE CLAIM: By Lemma 5, besides the essential-type triples, O − O − A
and O − O − B types can participate in ν′. Take a patient of a triple matched in ν′ of
type O −O −X for any X ∈ {A�B}. Without loss of generality, assume that her O donor
directly donates to her in ν′. Another triple’s O donor d1 donates to her in ν′ as well. In
return, her X donor donates to a (different) patient p1 in ν′. We can simply take this
O − O − X triple out, and form a new matching by d1 directly donating to p1 and rest
of the donations remain intact as in ν′. We repeat this procedure for all triples of types
O − A − B, O − A − A, O − B − B, O − O − A, and O − O − B iteratively. The final
matching, which we refer to as μ′, is feasible and consists of only essential-type triples
of ν′. Q.E.D.

Let μ and ν be defined as in the hypothesis of the lemma. Suppose that ν′ is an arbitrary
optimal matching in E . We will show that |ν| = |ν′|.

By Lemma 5, the types of triples that can be part of a feasible exchange besides the
essential types are O −O −A and O −O −B under the long-run assumption.

We form a matching μ′ by removing the non-essential-type triples from ν′ by the Claim.
We have

|μ| ≥ ∣∣μ′∣∣ (6)
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by optimality of μ in EE. We also have

n(A−O −B)[μ] + n(B −O −A)[μ]
≥ n(A−O −B)

[
μ′] + n(B −O −A)

[
μ′] (7)

by the fact that μ maximizes the number of A−O −B and B−O −A triples matched in
EE.

The O−O−A and O−O−B triples matched in ν′ require at least n(O−O−B)[ν′]+
n(O − O −A)[ν′]-many other triples with O donors in ν′. Since these triples can only be
of types A−O −B and B −O −A, we have

n(O −O −A)[ν] + n(O −O −B)[ν] = n(A−O −B)[μ] + n(B −O −A)[μ]
≥ n(A−O −B)

[
μ′] + n(B −O −A)

[
μ′]

≥ n(O −O −A)
[
ν′] + n(O −O −B)

[
ν′]�

where the equality follows from the construction of ν, the first inequality follows from
Equation (7), and the last inequality follows from the feasibility of ν′. This and Equation
(6) imply |ν| = |μ| + n(O − O − A)[ν] + n(O − O − B)[ν] ≥ |μ′| + n(O − O − A)[ν′] +
n(O−O−B)[ν′] = |ν′|. Since ν′ is optimal in E , ν is optimal in E with |ν| = |ν′|, completing
the proof. Q.E.D.

If we can show that it is possible to construct a matching μ, which simultaneously
matches

1. the maximum number of A−O−B and B−O−A triples in any possible matching,
and

2. the maximum number of essential-type triples,
then, using Lemma 8, we can construct an optimal matching using μ, and it matches
|μ| + n(A − O − B)[μ] + n(B − O − A)[μ] triples. This will also give us the optimal
number of triples that can be matched in the absence of exchange-size constraints.

Hence, our larger goal is to reach the above two goals simultaneously. Next, we define
two nonnegative numbers for triples in EE. These tell us the minimum (sA) and maximum
(sA) numbers of donors compatible with B blood-type patients that can be supplied by
patients with A blood-type patients:

sA := n(A−O −B)+ n(A−A−B)+ 2n(A−B −B)� (8)

sA := 2n(A−O −B)+ n(A−A−B)+ 2n(A−B −B)� (9)

Here, sA assumes that all A−O−B triples are treated like A−A−B types: the O blood-
type donor can be utilized internally, and hence, each A−O−B triple requires one donor
from outside, and so does each A − A − B triple. On the other hand, each A − B − B
triple needs two donors from outside.

In calculating sA, we treat A−O −B triples like A−B −B’s. Therefore, each of them
requires two donors from outside instead of one. Symmetrically, we define sB and sB.
Observe that

sA − sA = n(A−O −B) and sB − sB = n(B −O −A)�

We define a subalgorithm using these numbers:
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SUBALGORITHM 2—Group and Match Subalgorithm for Triple Types A−O −B, A−
B −B, A−A−B, B −O −A, B −A−A, B −B −A:

Group: Two cases are possible for sA, sA, sB, sB, defined in Equations (8) and (9).
Case 1. “[sA� sA] ∩ [sB� sB] �= ∅”:
Fix αA, αB such that 0 ≤ αA ≤ n(A − O − B), 0 ≤ αB ≤ n(B − O − A), and sA − αA =

sB − αB:
1. Group αA-many A−O−B triples with A−A−B types and the rest with A−B−B

types.
2. Group αB-many B−O−A triples with B−B−A types and the rest with B−A−A

types.
Case 2. “sB < sA”:
1. Group all A−O −B triples (i.e., (sA − sA)-many) with A−A−B types (i.e., αA =

sA − sA).
2. Group all B −O − A triples (i.e., (sB − sB)-many) with B −A −A types (i.e., αB =

sB − sB).
Case 3. “sA < sB”: Symmetric situation with Case 2 replacing A blood type with B.
We refer to all X − O − Z triples grouped with X − Y − Z triples and all X − Y − Z

triples for all for X�Y�Z ∈ {A�B} such that X �= Z as X − Y ∗ − Z triples or group. Let
n(X −Y ∗ −Z) be the number of triples in the X −Y ∗ −Z group and n(X −O −Z|X −
Y ∗ −Z) be the number of X −O −Z triples in the X −Y ∗ −Z group. Define:

� :=n
(
A−A∗ −B

) − n
(
B −B∗ −A

)
� (10)

Match: Starting with the triples with O donors in each group in each step:
Step 1: Carry out the maximum number of 2-way exchanges between the A − A∗ − B

and B −B∗ −A triples with the following exceptions:
(I) In Case 2 if �< 0 and is odd:

(A) If n(B−O−A)> 0: add one B−O−A triple to B−B∗ −A group from B−A∗ −A
group and continue with Step 1.

(B) If n(B −O −A) = 0 and an exchange can be conducted in Step 1: do not conduct
the last A − A∗ − B & B − B∗ − A 2-way exchange in Step 1 (and thus, exactly one
A−A∗ −B triple and an even number of B−B∗ −A triples remain unmatched in Step 1),
and if the remaining A−A∗ −B triple is of type A−O−B, then move it to the A−B∗ −B
group.

(II) In Case 3 if �> 0 and is odd:
(A) If n(A−O−B) > 0: add one A−O−B triple to A−A∗ −B group from A−B∗ −B

group and continue with Step 1.
(B) If n(A−O −B) = 0 and an exchange can be conducted in Step 1: do not conduct

the last A − A∗ − B & B − B∗ − A 2-way exchange in Step 1 (and thus, exactly one
B−B∗ −A triple and an even number of A−A∗ −B triples remain unmatched in Step 1),
and if the remaining B−B∗ −A triple is of type B−O−A, then move it to the B−A∗ −A
group.

Step 2: Carry out the maximum number of 3-way exchanges consisting of two A−A∗ −
B triples and one B − A∗ − A triple, and those consisting of two B − B∗ − A triples and
one A−B∗ −B among the remaining ones.

Step 3: If there are any A − O − B and B − O − A triples left in A − A∗ − B and
B−B∗ −A groups, respectively, then move them to A−B∗ −B and B−A∗ −A groups,
respectively. Carry out the maximum number of 2-way exchanges between the remaining
A−B∗ −B and B −A∗ −A triples.
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FIGURE 13.—Cases 1 and 2 of Group and Match Subalgorithm (Subalgorithm 2). Each solid line represents
2-way exchanges, and each solid line with a dot at the end represents 3-way exchanges in each of which two
triples participate from the group that is pointed by the circular end. Only one of the two 3-way exchanges will
be conducted in Step 2 in each subfigure. Exceptions are not depicted in Case 2.

Figure 13 summarizes how the Group and Match Subalgorithm works, along with its
consequences (to be proven in Propositions 2 and 3 below). This subalgorithm is embed-
ded in the optimal matching algorithm as follows:

ALGORITHM 3—Sequential Matching Algorithm in the Absence of Exchange-Size
Constraints:

Step 1: Use Subalgorithm 2, Group and Match, to match triples of types E.
Step 2: In any exchange determined in this matching, for each A−O−B or B−O−A

triple in the exchange, insert an O −O −A or an O −O −B triple using Lemma 8.

Before proving the optimality of Algorithm 3, we find an upper bound to the number
of triples that can be matched in an exchange pool:

LEMMA 9—Upper Bound Lemma: Consider the subpool EE. Then m, defined below, is
an upper bound to the number of triples that can be matched in a matching consisting only of
triples in EE:

m :=mA +mB where



DUAL-DONOR ORGAN EXCHANGE 17

mA := min
{
PA[EE]�

⌊
DA[EE] +DO[EE]

2

⌋
� sB

}
and (11)

mB := min
{
PB[EE]�

⌊
DB[EE] +DO[EE]

2

⌋
� sA

}
�

PROOF: The first term in mA, PA[EE], is the number of A blood-type patients and the
second term, �DA[EE]+DO [EE]

2 �, is the maximum number of A blood-type patients who can
receive two lobes from donors who are compatible with A blood-type patients, that is, O
and A blood-type donors in EE. Hence, each of them is an upper bound for the number of
triples with A blood-type patients in EE who can receive a transplant. Next consider the
third term: sB = n(B−B−A)+2n(B−O−A)+2n(B−A−A) is the maximum number
of A or O blood-type donors whom the B blood-type patients can provide for the triples
with A blood-type patients in EE. Each triple with an A blood-type patient in EE requires
at least one A or O blood-type donor coming from another triple to be matched feasibly,
as it can provide at most one compatible donor for itself. Hence, sB is also an upper bound
to the number of A blood-type patients who can be matched within EE, establishing the
formula for mA.

The argument is the same in mB for B blood-type patients. There are no triples with AB
or O blood-type patients in EE. This concludes the proof and establishes m as an upper
bound to the essential types that can be matched. Q.E.D.

We will prove that the upper bound found above is almost tight, and the Group and
Match subalgorithm matches always at least one fewer patient than m upper bound,
and often matches exactly m patients. Moreover, we show that when Group and Match
matches m − 1 triples, no more triples can be matched among the essential types. This
shows that Group and Match is an optimal matching algorithm for the essential types. It
also uses entirely 2- and 3-way exchanges.

PROPOSITION 2: In the absence of any exchange-size constraints, an optimal matching
within EE exactly matches m or m−1 patients, and moreover, Subalgorithm 2, Group and
Match, finds such a matching in this subpool using only 2- and 3-way exchanges.

PROOF: First observe that by construction, Group and Match conducts only 2- and 3-
way exchanges. For notational and expositional simplicity, suppose E = EE, that is, EE is
the whole pool. Thus, we drop the argument EE from DX and PX throughout.

Case 1. “[sA� sA] ∩ [sB� sB] �= ∅”: We will prove that all triples are matched by the sub-
algorithm, and that is m-many. Without loss of generality assume that

�= n
(
A−A∗ −B

) − n
(
B −B∗ −A

) ≥ 0�

Thus, all B − B∗ − A triples are matched in 2-way exchanges with A − A∗ − B triples in
Step 1 of the Match stage of the subalgorithm.

We first show that � is even. This will be used in the proofs for other cases to rule out
certain scenarios:

�= αA + n(A−A−B)− αB − n(B −B −A)

= sB − sA + n(A−A−B)− n(B −B −A)

= 2
(
n(A−B −B)+ n(A−O −B)− n(B −A−A)− n(B −O −A)

)
�

showing � is even.
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Next, we write down the number of B−A∗ −A triples needed to match all A blood-type
patients remaining in Step 2 and Step 3 of the Match stage:

�

2︸︷︷︸
in Step 2

+n(A−B −B)+ n(A−B −O)− αA︸ ︷︷ ︸
in Step 3

= αA + n(A−A−B)− αB − n(B −B −A)

2
+ n(A−B −B)+ n(A−B −O)− αA

= −αB − αA + sA − n(B −B −A)

2
= n(B −A−A)+ n(B −O −A)− αB

= n
(
B −A∗ −A

)
�

Thus, all B−A∗ −A triples are just sufficient to match all remaining A−A∗ −B triples in
Step 2 and all A−B∗ −B triples in Step 3. Hence, all triples, that is, PA +PB of them, are
matched through the subalgorithm. Thus, m ≤ PA +PB ≤m, where the second inequality
follows from Lemma 9. Thus, we have m = PA + PB.

Case 2. “sA > sB”: First, we show that mB = PB. We have

PB = n(B −B −A)+ n(B −O −A)+ n(B −A−A)≤ sB ≤ sB < sA ≤ sA� and

PB ≤ n(B −B −A)+ n(B −O −A)+ n(B −A−A)+
⌊
sA − sB

2

⌋

= n(A−O −B)+ n(A−B −B)

+
⌊
n(B −B −A)+ n(B −O −A)+ n(A−A−B)

2

⌋

=
⌊
DB +DO

2

⌋
�

Since mB = min{PB� �DB+DO

2 �� sA}, we obtain mB = PB.
In the Group stage, all A−O−B triples are grouped with A−A−B’s and all B−O−A

triples are grouped with B −A−A’s. There are two subcases, � ≥ 0 and �< 0:
Case 2.1. “� ≥ 0”: We have � = n(A−A∗−B)−n(B−B∗ −A) = n(A−A−B)+n(A−

O −B)− n(B−B−A). First, since �≥ 0, Exception (I) is not needed. Second, invoking
Exception (II) requires sB > sA, contradicting we are in Case 2. Thus, no exceptions are
invoked in Step 1. Then

a := n(B −B −A)︸ ︷︷ ︸
in Step 1

+2 min
{
n(B −A−A)+ n(B −O −A)�

⌊
�

2

⌋}
︸ ︷︷ ︸

in Step 2

+ max
{

0� n(B −A−A)+ n(B −O −A)−
⌊
�

2

⌋}
︸ ︷︷ ︸

in Step 3

A blood-type patients are matched in the subalgorithm.
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We claim that a= mA: Recall that a ≤mA by the upper bound by Lemma 9. Also recall
that

mA = min
{
PA�

⌊
DA +DO

2

⌋
� sB

}
and

PA = n(A−A−B)+ n(A−O −B)+ n(A−B −B)�⌊
DA +DO

2

⌋
= n(B −A−A)+ n(B −O −A)

+
⌊
n(A−A−B)+ n(A−O −B)+ n(B −B −A)

2

⌋
�

sB = n(B −B −A)+ 2n(B −O −A)+ 2n(B −A−A)�

Consider the following two subcases:
(a) If n(B −A−A)+ n(B −O −A) ≥ ��

2 �, then

mA ≥ a

= n(B −B −A)+
⌊
n(A−A−B)+ n(A−O −B)− n(B −B −A)

2

⌋

+ n(B −A−A)+ n(B −O −A)

=
⌊
DA +DO

2

⌋
≥mA�

(b) If n(B −A−A)+ n(B −O −A)< ��
2 �, then

mA ≥ a=n(B −B −A)+ 2n(B −O −A)+ 2n(B −A−A) = sB ≥mA�

Hence, in either case, we have a= mA.
Next, consider B blood-type patients. Observe that all B patients are matched in the

subalgorithm. As mB = PB, we have m = mA + mB (the maximum possible number by
Lemma 9) patients matched.

Case 2.2. “� < 0”: Below, we will prove that m patients can be matched except when
� is odd and yet Exception (I) cannot be invoked. In this case, we will show that (a) only
mA A patients and mB − 1 B patients can be matched at most, and (b) our subalgorithm
matches exactly that many agents. (Recall that Exception (II) is never invoked in Case 2.)
Then by Lemma 9, the result will follow. We analyze Case 2.2 in three subcases:

(a) “�< 0 is odd and Exception (I)(A) is invoked in Match stage”:
Since sA > sB, we have n(A−B∗ −B)− n(B −A∗ −A)− �−�

2 � > 0. Moreover, n(B −
O −A|B −A∗ −A)> 0.

Thus,

b := n(A−A−B)+ n(A−O −B)︸ ︷︷ ︸
in Step 1

+ (−�+ 1)︸ ︷︷ ︸
in Step 2

+n(B −A−A)+ n(B −O −A)− 1︸ ︷︷ ︸
in Step 3

= n(B −A−B)+ n(B −A−A)+ n(B −O −A)

= PB =mB
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B patients are matched. On the other hand, the number of A patients matched is

a := n(A−A−B)+ n(A−O −B)︸ ︷︷ ︸
in Step 1

+ −�+ 1
2︸ ︷︷ ︸

in Step 2

+n(B −A−A)+ n(B −O −A)− 1︸ ︷︷ ︸
in Step 3

= n(B −A−A)+ n(B −O −A)+ n(A−A−B)+ n(A−O −B)+
⌊−�

2

⌋

= n(B −A−A)+ n(B −O −A) (12)

+
⌊
n(A−A−B)+ n(A−O −B)+ n(B −B −A)

2

⌋

=
⌊
DA +DO

2

⌋
�

Recall that a ≤ mA ≤ �DA+DO

2 �, where the first inequality follows from Lemma 9. Thus,
a= mA.

(b) “�< 0 is odd and Exception (I)(B) is invoked in Match stage”:
Since sA > sB, n(A−B∗ −B)−n(B−A∗ −A)−�−�

2 �> 0. Moreover, n(B−O−A|B−
A∗ −A) = 0, and at least one exchange can be conducted in Step 1.

Now, the last A − A∗ − B & B − B∗ − A 2-way exchange in Step 1 is not conducted:
Hence, exactly one A−A∗ −B triple and an even number of B −B∗ −A triples remain
unmatched in Step 1. In Step 2, all remaining B − B∗ − A triples are matched with A −
B∗ −B triples. Moreover, in Step 3, all B−A∗ −A triples are matched. Thus, mB = PB B
patients are matched. On the other hand,

a := n(A−A−B)+ n(A−O −B)− 1︸ ︷︷ ︸
in Step 1

+ −�+ 1
2︸ ︷︷ ︸

in Step 2

+n(B −A−A)+ n(B −O −A)︸ ︷︷ ︸
in Step 3

=
⌊
DA +DO

2

⌋

A patients are matched (where the equality follows from Equation (12)). Thus, a= mA.
(c) “�< 0 is odd and yet none of the exceptions are invoked, or �< 0 is even”:
As sA > sB, in Steps 1 and 2 of the Match stage, if � is odd, only one of the B −B −A

triples is unmatched, and otherwise, all B − B − A triples are matched. In Step 3, all
B−A−A and B−O−A triples are matched with A−B−B triples in 2-way exchanges.
Hence, all B blood-type patients, but at most one, are matched. Next we prove the fol-
lowing claim:

CLAIM: In Case 2.2(c), the subalgorithm matches the maximum possible number of B
patients that can be matched, that is, mB − 1{� is odd}.33

PROOF OF THE CLAIM: If PB-many B patients are matched, then we are done. Sup-
pose the subalgorithm matches PB − 1-many B blood-type patients. In this case, mB = PB.

33Function 1{S} gets value 1 when statement S is true and 0 otherwise.
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Moreover, � is odd. If we could use all B blood-type patients in exchange, we can collec-
tively provide at most sB = n(B−B−A)+ 2n(B−A−A)+ 2n(B−O−A) donors to A
blood-type patients. Therefore, the maximum number of A patients that can be matched
(if it were possible) is: All A−A−B’s and all A−O−B’s each of which demands one A
donor from outside (since �< 0, i.e., n(A−A−B)+n(A−O−B) < n(B−B−A), this
is feasible), and rA := � n(B−B−A)+2n(B−A−A)+2n(B−O−A)−n(A−A−B)−n(A−O−B)

2 �-many A−B−B’s,
each of which demands two outside donors. Observe that rA = n(B − A − A) + n(B −
O −A)+ �−�

2 �. Since � is odd, one of the A blood-type donors provided by one of the B
blood-type patients is not used in this upper bound, even though some A patients remain
unmatched. Thus, at least one B patient will not be matched in any matching. Thus, the
subalgorithm is matching the maximum possible number of B blood-type patients. Q.E.D.

The number of A blood-type patients matched by the subalgorithm is

a := n(A−A−B)+ n(A−O −B)︸ ︷︷ ︸
in Step 1

+
⌊−�

2

⌋
︸ ︷︷ ︸
in Step 2

+n(B −A−A)+ n(B −O −A)︸ ︷︷ ︸
in Step 3

=
⌊
DA +DO

2

⌋

by Equation (12). Since we have a≤mA ≤ �DA+DO

2 �, we get a= mA.
Case 3. “sB > sA”: It is the symmetric version of Case 2 switching the roles of A and B.

Q.E.D.

Note that, in the Group and Match subalgorithm, whenever we can, we prioritized A−
O − B and B − O − A triples in their group while matching. There is a reason for that.
Next, we prove that Group and Match not only finds an optimal matching within EE, but
also matches the maximum possible number of A−O −B and B −O −A triples.

PROPOSITION 3: Consider EE, that is, the subpool with types in E. Subalgorithm 2,
Group and Match, matches the maximum number of A − O − B and B − O − A
triples possible in any matching; and these numbers are min{n(A − O − B)� sB} and
min{n(B −O −A)� sA}, respectively.

PROOF: First, we show that Group and Match subalgorithm matches min{n(A − O −
B)� sB}-many A−O −B triples and min{n(B−O −A)� sA}-many B−O −A triples. We
prove this for A − O − B’s (the proof for B − O − A’s is symmetric). Define κ as the
number of A−O −B triples matched in the algorithm.

Case 1. “[sA� sA] ∩ [sB� sB] �= ∅]”: All triples in EE are matched by the subalgorithm (by
the proof of Proposition 2). Hence n(A−O − B)-many A − O − B triples are matched.
We have that mA-many A blood-type patients are matched by Lemma 9. Since n(A−O−
B) ≤ mA ≤ sB, κ-many A −O − B triples are matched. Thus, κ = n(A− O − B) ≤ PA =
mA ≤ sB.

Case 2. “sA > sB”: In the subalgorithm, triples with O donors are matched before any
other triple in their respective group. Observe that after Steps 1 and 2, either all A −
O−B’s are matched, or no A−A−B’s are matched, as they are always processed before
A−A−B’s. Similarly, after Step 3, either all A−O−B’s are matched, or no A−B−B’s
are matched (as remaining A − O − B types are moved to the A − B∗ − B group after
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Step 2). Suppose some A−O−B’s are unmatched. Since we have mA A patients matched
in this case by the Proof of Proposition 2, all of them are from triples of type A−O −B.
Since mA is the upper-bound of A patients matched, then maximum possible number of
A − O − B triples are matched. Thus, κ = min{mA�n(A − O − B)} = min{n(A − O −
B)� sB� �DA+DO

2 �}. Moreover, we have
⌊
DA +DO

2

⌋
= n(B −A−A)+ n(B −O −A)

+
⌊
n(A−A−B)+ n(A−O −B)+ n(B −B −A)

2

⌋

=
⌊
n(A−A−B)+ sB + n(A−O −B)

2

⌋

≥ min
{
n(A−O −B)� sB

}
�

Thus, κ = min{n(A−O −B)� sB}.
Case 3. “sB > sA”: All A − O − B’s are in the A − B∗ − B group. If � ≤ 0 or � > 0

is even, then all A − O − B triples are matched following the proof of Proposition 2. If
Exception (II)(A) is invoked, then one A−O−B is moved to the A−A∗ −B group after
Step 1, but is immediately matched in Step 2. Moreover, all remaining A − O − B’s are
matched in Step 3. If Exception (II)(B) or if �> 0 is odd and yet no Exception is invoked,
then there are no A−O −B triples. Thus, κ = n(A−O −B)≤ mA ≤ sB.

Hence, κ = min{n(A−O −B)� sB}. By Lemma 9, this is the maximum number of A−
O −B type triples that can be matched (i.e., if there were no other A patients, we would
have mA = κ). Q.E.D.

THEOREM 4: Suppose that the dual-donor exchange pool E satisfies the long-run assump-
tion. In the absence of exchange-size constraints, an optimal matching can be found through
Algorithm 3, which uses only 2–6-way exchanges. Moreover, the number of patients matched
in an optimal matching is given by

m− I + min
{
n(A−O −B)� sB

} + min
{
n(B −O −A)� sA

}
�

where I ∈ {0�1}, sX for X ∈ {A�B} is defined as in Equation (9), and m is defined in Equa-
tion system (11).

PROOF: By Proposition 2, m−I patients from the essential triple types E are matched
through the Group and Match subalgorithm (in the first step of the sequential matching
algorithm in absence of exchange-size constraints), and by Proposition 3, this algorithm
also matches the maximum possible number of A−O −B and B −O −A triples. Let μ
be the outcome of this subalgorithm, which is optimal for triples from E. By Lemma 8,
we can add additionally one triple from types not in E for each A − O − B and B −
O − A triple matched in μ. This is the maximum number of triples we can match from
types not in E in any matching by the same lemma. Since the number of A − O − B
and B −O −A triples matched in μ is min{n(A−O −B)� sB} + min{n(B −O −A)� sA}
(by Proposition 3), then the sequential matching algorithm in absence of exchange-size
constraints matches a total of m− I + min{n(A−O − B)� sB} + min{n(B −O −A)� sA}
triples, and its outcome is optimal. Matching μ has exchanges no larger than 3-ways.
Since at most one additional triple is inserted in each exchange for each triple matched
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in the second step of the algorithm, then the final outcome has exchanges no larger than
6-ways. Q.E.D.

Theorem 4 implies Theorem 3.
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