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Abstract

Although a pilot national live-donor kidney exchange program was recently launched in the US, the kid-
ney shortage is increasing faster than ever. A new solution paradigm is able to incorporate compatible pairs
in exchange. In this paper, we consider an exchange framework that has both compatible and incompatible
pairs, and patients are indifferent over compatible pairs. Only two-way exchanges are permitted because of
institutional constraints. We explore the structure of Pareto-efficient matchings in this framework. We show
that under Pareto-efficient matchings, the same number of patients receive transplants, and it is possible to
construct Pareto-efficient matchings that match the same incompatible pairs while matching the least num-
ber of compatible pairs. We extend the celebrated Gallai–Edmonds Decomposition in the combinatorial
optimization literature to our new framework. We also conduct comparative static exercises on how this
decomposition changes as new compatible pairs join the pool.
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1. Introduction

In the last decade, market design found an unexpected practical application in kidney ex-
change, which led to an interdisciplinary collaboration between economists and medical profes-
sionals to establish several kidney exchange programs. To explain and motivate the contribution
of the current paper, it is essential to describe how this collaboration has evolved over the years,
and led to new innovations in kidney exchange. In the early 2000s, economists observed that the
two main types of kidney exchanges conducted in the US correspond to the most basic forms
of exchanges in a house allocation model [1]. Building on this setup, they formulated a kid-
ney exchange model and proposed a top trading cycles and chains mechanism (TTCC) (Roth,
Sönmez, and Ünver, henceforth, RSÜ [15]). In their simulations RSÜ [15] have shown that, in
contrast to the 45 percent of the patients with willing live donors who fail to receive a transplant
in the absence of kidney exchanges, fewer than 10 percent would remain without a transplant
under TTCC.

When economists shared their findings with the medical community, two reservations were
expressed regarding RSÜ [15]. First of all, RSÜ [15] allowed for potentially large exchanges that
would be logistically hard to implement since all transplants in an exchange need to be carried
out simultaneously. The second concern was that RSÜ [15] assumed strict preferences between
compatible kidneys, which is contrary to the general tendency in the US where doctors assume
that two compatible living-donor kidneys have essentially the same survival rates [8,3].

To address these concerns, RSÜ [16] proposed a second model that restricted the size of
kidney exchanges to two patient-donor pairs and assumed that patients are indifferent between
compatible kidneys. RSÜ [16] observed that their pairwise kidney exchange model is an applica-
tion of a well-analyzed problem in the discrete-optimization literature,2 some of the techniques
of which were recently imported to economic theory by Bogomolnaia and Moulin [2] for two-
sided matching markets.3 The optimal-matching methodology proposed by RSÜ [16] became the
basis of practical kidney exchange throughout the world including at the New England Kidney
Exchange Program (NEPKE) – the first exchange program using an optimization-based mecha-
nism – and the Alliance for Paired Donation (APD), both of which were formed as a result of the
collaboration between economists and medical professionals. Most recently, the National Kid-
ney Paired Donation Pilot Program in the US and National Program in the UK were established
based on similar principles.4

An earlier, abstract version of the RSÜ [16] model was analyzed extensively in the 1960s. One
of the most important contributions to this literature was that of Gallai [5,6] and Edmonds [4],
who characterized the set of Pareto-efficient matchings. This result is known as the Gallai–
Edmonds Decomposition (GED) Theorem, and it plays a central role in our current paper. One
of the corollaries to the GED Theorem has a very plausible implication for pairwise kidney ex-
change: the same number of patients are matched at every Pareto-efficient matching. Hence,
a program never matches a high-priority patient at the expense of multiple patients under the
Pareto-efficient pairwise priority mechanisms offered by RSÜ [16]. This result does not hold
for TTCC or more generally for mechanisms that allow larger exchanges than pairwise. Hence,
from a medical ethics perspective it gives pairwise priority mechanisms an edge. However, this

2 See Lovász and Plummer [11] and Korte and Vygen [10] for comprehensive surveys of this literature.
3 See Yılmaz [21] for an application of this two-sided matching approach in kidney exchange.
4 These four programs also allow for three-way exchanges based on findings of RSÜ [18] and Saidman et al. [19], see

below.
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advantage comes at a high cost to aggregate patient welfare: compared to TTCC, the number
of patients who remain without a transplant more than triples under the pairwise priority mech-
anisms. To explain this large difference, we need to describe the basic mechanics for kidney
transplantation.

A patient with a healthy and willing live donor might not be able to receive his kidney because
of either blood-type incompatibility or tissue-type incompatibility. There are four blood types,
A, B, AB, O, where 44 percent of the US population have O blood type, 42 percent have A blood
type, 10 percent have B blood type, and 4 percent have AB blood type. Furthermore:

• an O blood-type donor is blood-type compatible with all patients;
• an A blood-type donor is blood-type compatible with only A and AB blood-type patients;

and
• a B blood-type donor is blood-type compatible with only B and AB blood-type patients;
• an AB blood-type donor is blood-type compatible with only AB blood-type patients.

This very important asymmetry in blood-type compatibility relation makes O blood-type donors
highly sought after and O blood-type patients highly vulnerable. Based on the US blood-type
distribution given above, the odds for blood-type incompatibility are about 35 percent between a
patient and a random donor.

A donor might also be tissue-type incompatible with his paired patient. Zenios, Woodle, and
Ross [23] report that the odds for tissue-type incompatibility are about 11 percent between a
patient and a random donor. Consistent with figures for random pairs, a large majority of incom-
patible pairs across various kidney exchange programs are blood-type incompatible.

A key observation illustrating the key role of compatible pairs in kidney exchange is the fol-
lowing: with the exception of A blood-type patients with B blood-type donors and B blood-type
patients with A blood-type donors, a blood-type-incompatible pair cannot engage in exchange
with any blood-type-incompatible pair. Hence each blood-type incompatible pair needs a dis-
tinct blood-type-compatible pair to engage in exchange. In a regime where patients are assumed
to be indifferent between all compatible pairs, the only blood-type compatible pairs available
for exchange are those that are tissue-type incompatible. In contrast, in a regime where patients
have strict preferences over compatible pairs, virtually all pairs are available for exchange. This
is by far the most important reason for the large aggregate patient welfare gap between the RSÜ
[15] TTCC mechanism and the RSÜ [16] pairwise priority mechanism. Blood-type O patients
with blood-type A, B, or AB donors, and blood-type A or B patients with blood-type AB donors
face much stronger competition for a fraction of tissue-type incompatible pairs in a program that
excludes compatible pairs from the kidney exchange pool. This highly vulnerable group makes
up more than 25 percent of all pairs.

Once it became clear that pairwise exchange among incompatible pairs will leave about half
of these incompatible pairs without a transplant, economists were able to convince the trans-
plantation community to be more flexible about the size of acceptable exchanges. RSÜ [18] and
Saidman et al. [19] have shown that the percentage of incompatible pairs who receive transplants
increases to 60 percent if three-way exchanges are allowed in addition to two-way exchanges,
although larger exchanges, and especially those larger than four-way exchanges, essentially have
minimal impact on aggregate patient welfare. Based on these results, all major kidney exchange
programs, including the pilot national kidney exchange program in the US, adopted mechanisms
that allow for three-way exchanges. One negative implication of this flexibility is the loss of the
feature that an equal number of patients receive transplants in all Pareto-efficient matchings. In
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particular, the priority mechanism used by NEPKE does not necessarily maximize the number of
patients receiving transplants. That is perhaps a small price to pay in comparison to welfare gains
from three-way exchanges, but there is an alternative that not only dramatically increases the wel-
fare gains from kidney exchange but also overcomes the potential welfare loss associated with
priority mechanisms. Under this new paradigm, the elegant GED structure of Pareto-efficient
matchings – which no longer exists in the presence of three-way exchanges – is restored.

This alternative was advocated by RSÜ [17], who proposed the inclusion of compatible pairs
in the kidney exchange pool. They emphasized that the inclusion of compatible pairs in the
kidney exchange pool would produce the largest patient welfare gains in comparison to a number
of other design modifications tailored to improve patient welfare. Assuming a pool of 100 pairs,
they have shown that the percentage of patients who remain without a transplant can be reduced
to less than 10 percent if compatible pairs are included in the exchange pool. This dramatically
improved patient welfare is due to the elimination of the above-discussed asymmetry, getting to
the root of the problem.

Although RSÜ [17] were the first to advocate the inclusion of compatible pairs in kidney ex-
change, they were not the first to introduce the idea. This type of kidney exchange was originally
introduced by Ross and Woodle [14] as an altruistically unbalanced kidney exchange. Ironically,
Ross and Woodle [14] themselves condemned this type of exchange as morally inappropriate on
the grounds of potential coercion, even though they did not fully close the door on its implemen-
tation.

As a result to this strong objection, altruistically unbalanced kidney exchange received no
attention until RSÜ [17] strongly advocated for the inclusion of compatible pairs in kidney ex-
change. This message has reached the transplantation community, and a number of recent papers
in the transplantation literature also make a case for altruistically unbalanced kidney exchange.5

Gentry et al. [7] verified the large efficiency gains from the inclusion of compatible pairs in the
exchange pool. Ratner et al. [13] reported a survey of 52 patients with compatible donors who
were asked whether they would be willing to participate in an exchange. Less than 20 percent
were opposed to the idea. This study presents a stark contrast to the long-held mainstream be-
lief in the transplantation community regarding compatible pairs’ attitudes toward altruistically
unbalanced kidney exchange. The Texas Transplant Institute in San Antonio, TX is a transplant
center that has successfully utilized compatible pairs in its exchange program.6 As the attitude
toward altruistically unbalanced kidney exchange has improved, some medical ethicists have
started questioning the grounds on which the medical community has been opposed to these
types of exchanges in the first place. Steinberg [20] states:

Despite their utilitarian value transplant ethicists have condemned this type of organ exchange
as morally inappropriate. An opposing analysis concludes that these exchanges are examples
of moral excellence that should be encouraged.

5 Other economists also became interested in this paradigm. Nicolò and Rodriguez-Álvarez [12] introduced a model
that incorporates compatible pairs to kidney exchange under the assumption that patients have strict preferences over the
ages of compatible donors. They studied Pareto-efficient and non-manipulable mechanisms in this domain.

6 Ratner et al. [13] also reported three altruistically unbalanced exchanges conducted at Columbia University as a proof
of concept involving four compatible pairs. Thanks to these compatible pairs, five additional patients received transplants.
Columbia University currently has another altruistically unbalanced kidney exchange program.
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Motivated by this paradigm shift, in this paper, we consider a pairwise kidney exchange model
in which both compatible and incompatible pairs are available for exchange. Our main focus is
understanding the structure of Pareto-efficient matchings and in particular the role of compatible
pairs in this structure. In our main result (Theorem 1) we show that the GED Theorem extends to
this natural structure, and in particular the number of patients who receive transplants is the same
across all Pareto-efficient matchings (Proposition 1). Motivated by this observation, we propose
priority allocation rules as mechanisms that match the maximum number of incompatible pairs
no matter how we choose the priority order. Although incentive issues have proved to be of
secondary importance in kidney exchange mechanisms, we also show that these mechanisms are
incentive compatible in Appendix A (Theorem 2).

We further show that the choice of incompatible pairs can be separated from the choice
of compatible pairs under any Pareto-efficient mechanism (Proposition 2). This result implies
that the number of compatible pairs needed to participate in a Pareto-efficient matching can be
minimized, regardless of the choice of incompatible pairs who benefit from the exchange (Corol-
lary 1). This corollary is particularly important, since policy makers may wish to minimize the
number of compatible pairs participating in exchanges, and Corollary 1 implies that this poten-
tial policy puts no restriction on the choice of incompatible pairs. In contrast to RSÜ [16], which
builds on the discrete-optimization literature, we have no results that we can directly utilize from
the earlier literature, although the original GED Theorem provides us with a convenient starting
point for the inductive proof of our main result. Our proof technique is also of independent in-
terest as it allows us to carry out a useful comparative static exercise: we fully characterize the
impact of the addition of one compatible pair to a problem, and among other things, we show that
the entire patient population (weakly) benefits from the inclusion of a compatible pair. In contrast
to the use of three-way exchanges that require kidney exchange programs to make difficult dis-
tributional choices to increase the number of patients who benefit, inclusion of compatible pairs
in the pool benefits the whole population and in particular hard-to-match O blood-type patients.

2. The model

A pair consists of a patient and a donor. A pair is compatible if the donor of the pair can
medically donate her kidney to the patient of the pair and incompatible otherwise. Let NI be
the set of incompatible pairs and NC be the set of compatible pairs. Let N = NI ∪ NC be the set
of all pairs. The donor of pair x is compatible with the patient of pair y if the donor of pair x

can medically donate a kidney to the patient of pair y. Two distinct pairs x, y ∈ N are mutually
compatible if the donor of pair x is compatible with the patient of pair y and the donor of pair y

is compatible with the patient of pair x.7

For any pair x ∈ N , let �x denote its preferences over N . Let �x denote the strict preference
relation and ∼x denote the indifference relation associated with �x . The preferences of a pair
are dictated by the patient of the pair who is indifferent between all compatible kidneys and who
strictly prefers any compatible kidney to any incompatible kidney. In addition, the patient of an
incompatible pair strictly prefers remaining unmatched (i.e. keeping his donor’s incompatible
kidney) to any other incompatible kidney. Therefore, for any incompatible pair i ∈ NI ,

7 The term “incompatible pairs” may lead to some ambiguity. We will use this term to refer to the plural of the term
“incompatible pair.” Pairs that cannot feasibly participate in an exchange will be referred to as “pairs that are not mutually
compatible.”
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• x ∼i y for distinct x, y ∈ N with a compatible donor for the patient of pair i,
• x �i i for any x ∈ N with a compatible donor for the patient of pair i,
• i �i x for any x ∈ N without a compatible donor for the patient of pair i,

and for any compatible pair c ∈ NC ,

• x ∼c y for distinct x, y ∈ N with a compatible donor for the patient of pair c,
• c �c x for any x ∈ N without a compatible donor for the patient of pair c.

Throughout the paper we assume that two-way exchanges are feasible only when at least one of
the pairs is incompatible.8 A two-way exchange is ordinary if it is an exchange between two in-
compatible pairs that are mutually compatible. A two-way exchange is altruistically unbalanced
if it is an exchange between an incompatible and a compatible pair that are mutually compatible.

The feasible exchange matrix R = [rx,y]x,y∈N identifies all feasible exchanges where

rx,y =
{

1 if y ∈ N \ {x}, x, y are mutually compatible, and x or y ∈ NI

0 otherwise.

For any x, y ∈ N with rx,y = 1, we refer to the pair (x, y) as a feasible exchange.9

An altruistically unbalanced kidney exchange problem (or simply a problem) (N,R) con-
sists of a set of pairs and its feasible exchange matrix.

A matching is a set of mutually exclusive feasible exchanges. Formally, given a set N of
pairs, a matching is a set μ ⊆ 2N2

such that

1. (x, y) ∈ μ and (x, y′) ∈ μ implies y = y′, and
2. (x, y) ∈ μ implies rx,y = 1.

Here (x, y) ∈ μ means that the patient of each pair receives a kidney from the donor of the other
pair. Let M(N,R) denote the set of all matchings for a given problem (N,R).

For any μ ∈M(N,R) and (x, y) ∈ μ, define μ(x) ≡ y and μ(y) ≡ x. Here pairs x and y are
matched with each other under μ. For any μ ∈ M(N,R) and x ∈ N with no y ∈ N \ {x} such
that (x, y) ∈ μ, define μ(x) ≡ x. Here x is unmatched under μ. For any matching μ, let Mμ

denote the set of pairs that are matched under μ. Formally,

Mμ = {
x ∈ N : μ(x) 	= x

}
.

Observe that an incompatible pair receives a transplant under a matching μ only if it is matched
with another pair whereas a compatible pair receives a transplant whether it is matched or not. For
any matching μ, let T μ denote the set of all pairs who receive a transplant under μ. Formally,

T μ = {
x ∈ NI : μ(x) 	= x

} ∪ NC.

Let Iμ refer to the set of incompatible pairs that are matched under μ. That is,

Iμ = Mμ ∩ NI = T μ ∩ NI .

Similarly, let Cμ refer to the set of compatible pairs that are matched under μ. That is,

Cμ = Mμ ∩ NC.

8 Clearly there is no benefit from an exchange between two compatible pairs in our model.
9 The ordering of pairs in a feasible exchange is not important, thus (x, y) = (y, x) in our notation.
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3. Pareto-efficient matchings

Throughout this section, fix a problem (N,R). For any μ,ν ∈ M, μ Pareto-dominates ν if
μ(x) �x ν(x) for all x ∈ N and μ(x) �x ν(x) for some x ∈ N . A matching μ ∈ M is Pareto
efficient if there exists no matching that Pareto-dominates μ. Let E ⊆ M be the set of Pareto-
efficient matchings.

When there are no compatible pairs, it is well known that the same number of incompatible
pairs is matched at each Pareto-efficient matching. In our model, what is critical is who receives a
transplant (rather than who is matched). In our first result, we show that the number of the patients
who receive a transplant is the same under any Pareto-efficient matching and that number is equal
to the maximum number of pairs that can receive a transplant under any matching:

Proposition 1. A matching μ ∈ M is Pareto efficient if and only if |T μ| = maxη∈M |T η|. Hence,
for any two Pareto-efficient matchings μ,ν ∈ E , |T μ| = |T ν |.

Proof of Proposition 1. It is straightforward to see that if |T μ| = maxη∈M |T η| then μ is Pareto
efficient.

Next, we show that for two matchings μ,ν ∈ M that are such that |T μ| > |T ν |, there exists
a matching that Pareto-dominates ν. This will prove that if a matching μ is Pareto efficient then
|T μ| = maxη∈M |T η|. Let μ,ν ∈ M be such that |T μ| > |T ν |. Let a0 ∈ T μ \ T ν . Since patients
of compatible pairs always receive a transplant, a0 ∈ NI and therefore a0 ∈ Mμ. Construct the
sequence {a0, a1, . . . , ak} ⊆ Mμ ∪ Mν as follows:

a1 = μ(a0), a2 = ν(a1), . . . ak =
{

μ(ak−1) if k is odd
ν(ak−1) if k is even

and where the last element of the sequence, ak , is unmatched either under μ or under ν (i.e.
ak ∈ (Mμ \ Mν) ∪ (Mν \ Mμ)). Observe that by construction, a0 is matched under μ but not
under ν, whereas a1, . . . , ak−1 are all matched in both μ and ν. Also observe that (a�, a�+1) is a
feasible exchange for any � ∈ {0,1, . . . , k − 1}.

There are three cases to consider:

Case 1. ak ∈ T ν \ T μ:
This case, indeed, does not help us to construct a matching that Pareto-dominates ν.
However, since
(i) |T μ| > |T ν |, and

(ii) any pair that is not at the two ends of the sequence receives a transplant in both μ

and ν,
there exists a0 ∈ T μ \ T ν such that the last element of the above constructed sequence
ak is such that ak /∈ T ν \ T μ. Hence Case 1 cannot cover all situations.

Case 2. ak ∈ Mμ \ Mν :
Since ak is matched under μ but not under ν, k is odd. Consider the following matching
η ∈ M:

η = (
ν \ {

(a1, a2), (a3, a4), . . . , (ak−2, ak−1)
})

∪ {
(a0, a1), (a2, a3), . . . , (ak−1, ak)

}
.

We have T η = T ν ∪ {a0, ak}. Since a0 /∈ T ν , matching η Pareto-dominates matching ν.
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Case 3. ak ∈ NC and ak ∈ Mν \ Mμ:
Since ak is matched under ν but not under μ, k is even. Consider the following matching
η ∈M:

η = (
ν \ {

(a1, a2), (a3, a4), . . . , (ak−1, ak)
})

∪ {
(a0, a1), (a2, a3), . . . , (ak−2, ak−1)

}
.

Observe that ak is matched under ν but not under η, whereas a0 is matched under η

but not under ν. But since ak /∈ NI , T η = T μ ∪ {a0}, and therefore matching η Pareto-
dominates matching ν.

Since there exists a0 ∈ T μ \ T ν where either Case 2 or Case 3 applies, matching ν is Pareto
inefficient. �

Our next result shows that the choice of compatible pairs to be matched at a Pareto-efficient
matching can be separated from the choice of incompatible pairs.

Proposition 2. Let μ,ν ∈ E be two Pareto-efficient matchings. Then there exists a Pareto-efficient
matching η ∈ E such that Mη = Cμ ∪ I ν .

Proof of Proposition 2. Let μ,ν be as in the statement of the proposition. By Proposition 1,
|T μ \ T ν | = |T ν \ T μ|. If T μ = T ν then η = μ and we are done. Otherwise let a0 ∈ T μ \ T ν .
Note that a0 ∈ NI (since only incompatible pairs can receive a transplant in one matching but not
in another).

Construct the sequence {a0, a1, . . . , ak} ⊆ Mμ ∪ Mν as follows:

a1 = μ(a0), a2 = ν(a1), . . . ak =
{

μ(ak−1) if k is odd
ν(ak−1) if k is even

and where the last element of the sequence, ak , is unmatched either under μ or under ν

(i.e. ak ∈ (Mμ \ Mν) ∪ (Mν \ Mμ)). Observe that (a�, a�+1) is a feasible exchange for any
� ∈ {0,1, . . . , k − 1}.

We will construct a matching that matches ak together with all elements of Mμ except
a0 ∈ NI . Repeated application of this construction yields the desired matching η.

There are three cases to consider:

Case 1. k is odd:
In this case both a0 and ak are matched under μ, but not under ν. Consider the matching

ν′ = (
ν \ {

(a1, a2), (a3, a4), . . . , (ak−2, ak−1)
})

∪ {
(a0, a1), (a2, a3), . . . , (ak−1, ak)

}
.

By construction, Mν′ = Mν ∪ {a0, ak}. Moreover, while ak may not be an incompatible
pair, a0 is, and hence T ν ⊂ T ν′

. Therefore ν′ Pareto-dominates ν, contradicting the
Pareto efficiency of ν.

Case 2. k is even with ak ∈ NC :
In this case ak , a compatible pair, is matched under ν but not under μ. In contrast, a0,
an incompatible pair, is matched under μ but not under ν. Consider the matching
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ν′ = (
ν \ {

(a1, a2), (a3, a4), . . . , (ak−1, ak)
})

∪ {
(a0, a1), (a2, a3), . . . , (ak−2, ak−1)

}
.

By construction, Mν′ \ Mν = {a0}, whereas Mν \ Mν′ = {ak}. Since a0 is an incompat-
ible pair while ak is not, T ν ⊂ T ν′

. Therefore ν′ Pareto-dominates ν, contradicting the
Pareto efficiency of ν.

Since Cases 1 and 2 each yield a contradiction, for each a0 ∈ T μ \ T ν , the last element ak of
the above constructed sequence {a0, a1, . . . , ak} should be an incompatible pair and k should be
even. We next consider this final case.

Case 3. k is even with ak ∈ NI :
In this case ak is matched under ν, and therefore, by construction, ak ∈ T ν \ T μ. Con-
sider the matching

μ′ = (
μ \ {

(a0, a1), (a2, a3), . . . , (ak−2, ak−1)
})

∪ {
(a1, a2), (a3, a4), . . . , (ak−1, ak)

}
.

By construction, Mμ′ = (Mμ \ {a0}) ∪ {ak}. So in comparison with matching μ, match-
ing μ′ matches incompatible pair ak instead of incompatible pair a0. Observe that
|T μ′ ∩ T ν | = |T μ ∩ T ν | + 1 while Cμ = Cμ′

. If |T ν \ T μ| = 1, then η = μ′ is the de-
sired matching and we are done. Otherwise, since Case 3 is the only viable case, we can
repeat the same construction for any a0 ∈ T μ \T ν to obtain the desired matching η. �

In the present context, the involvement of compatible pairs in exchange is purely altruistic,
and it may therefore be plausible to minimize the number of compatible pairs matched at Pareto-
efficient matchings. The following corollary states that such a policy does not affect the choice
of incompatible pairs.

Corollary 1. Let μ ∈ E . Then there exists η ∈ E such that Iη = Iμ and |Cη| = minν∈E |Cν |.

3.1. The priority mechanisms

The experience of transplant centers is mostly with the priority allocation systems used to
allocate cadaver organs. NEPKE adopted a variant of a priority allocation system for ordinary
kidney exchanges. Priority mechanisms can be easily adapted to kidney exchanges that are or are
not altruistically unbalanced.

Let |NI | = n. A priority order is a one-to-one and onto function π : {1, . . . , n} → NI . Here
incompatible pair π(k) is the kth highest priority pair for any k ∈ {1, . . . , n}.

For any problem, the priority mechanism induced by π picks any matching from a set of
matchings En

π , which is obtained by refining the set of matchings in n steps as follows:

• Let E0
π = M (i.e. the set of all matchings).

• In general for k ≤ n, let Ek
π ⊆ Ek−1

π be such that

Ek
π =

{ {μ ∈ Ek−1
π : μ(π(k)) 	= π(k)} if ∃μ ∈ Ek−1

π s.t. μ(π(k)) 	= π(k)

Ek−1
π otherwise.
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Each matching in En
π is referred to as a priority matching, and they all match the same set

of incompatible pairs. By construction, each matching in En
π is Pareto efficient. Observe that

by Proposition 1 there is no conflict between priority allocation and aggregate patient welfare
maximization.

We also inspect the incentive properties of a priority mechanism in Appendix A. A prior-
ity mechanism is immune to any patient’s manipulations by declaring some of the pairs whose
donors are compatible with this patient to be incompatible. Through our interactions with the
medical community, we have observed that manipulations of this sort do not play a significant
role, since compatibility information is usually obtained from observable and verifiable medical
data. Because of this, we relegate this result and its proof to Appendix A.

4. The structure of Pareto-efficient matchings and comparative statics

For any problem (N,R), partition the set of pairs N = NI ∪ NC as {U(N,R),O(N,R),

P (N,R)} where10

U(N,R) = {
x ∈ NI : ∃μ ∈ E(N,R) s.t. μ(x) = x

}
,

O(N,R) = {
x ∈ N \ U(N,R) : ∃y ∈ U(N,R) s.t. ry,x = 1

}
,

P (N,R) = N \ (
U(N,R) ∪ O(N,R)

)
.

That is, U(N,R) is the set of incompatible pairs each of which remains unmatched under at least
one Pareto-efficient matching. We refer to U(N,R) as the set of underdemanded pairs. Set
O(N,R) is the set of pairs that are not underdemanded and have a mutually compatible under-
demanded pair. We will refer to O(N,R) as the set of overdemanded pairs. Set P(N,R) is the
remaining set of pairs, and we will refer to it as the set of perfectly matched pairs. Theorem 1,
which we will shortly state, will justify this terminology. We refer to this decomposition of pairs
as the demand decomposition of problem (N,R).

For any K ⊂ N , let RK = [rx,y]x,y∈K be the feasible exchange submatrix for the pairs in K .
We refer to (K,RK) as a subproblem of (N,R). A subproblem (K,RK) is connected if for any
x, y ∈ K there exist x1, x2, .., xm ∈ K with x1 = x and xm = y such that for all � ∈ {1, ...,m−1},
rx�,x�+1 = 1. A connected subproblem (K,RK) is a component of (N,R) if there is no connected
subproblem (L,RL) such that K � L.

Consider the subproblem (N \ O(N,R),RN\O(N,R)) obtained by removal of all pairs in
O(N,R).

We refer to a component (K,RK) of (N \O(N,R),RN\O(N,R)) as a dependent component
if K ⊆ NI and |K| is odd. We refer to a component (K,RK) of (N \ O(N,R),RN\O(N,R))

as a self-sufficient component if K ∩ NC 	= ∅ or |K| is even. We will justify this choice of
terminology in the theorem presented below. Let D denote the set of dependent components. Let
S denote the set of self-sufficient components. We explain these definitions through the following
example:

Example 1. Consider the problem in Fig. 1. It consists of 17 incompatible pairs i0, i1, ..., i16,
and two compatible pairs c0 and c1. Since we will analyze the effect of adding an additional

10 In this section and in Appendix A, we no longer fix a problem. Therefore, we denote the problem that we are referring
to together with the notation for the relevant concepts in this section. For example, we denote the set of Pareto-efficient
matchings of problem (N,R) by E(N,R) instead of just E .
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Fig. 1. Problem (N−c,R−c) in Example 1.

compatible pair c to this problem in Example 2, denote it as (N−c,R−c). In Fig. 1, we show
the demand decomposition of (N−c,R−c). There are two overdemanded pairs c1 and i4. In gen-
eral, an algorithm needs to be executed to find the overdemanded pairs; however, in this example
it is relatively straightforward to verify that U(N−c,R−c) = {i5, i6, ..., i16}, O(N−c,R−c) =
{c1, i4}, and P(N−c,R−c) = {c0, i0, i1, i2, i3}. There is only one self-sufficient component
(F0,R

−c
F0

) where F0 = {c0, i0, i1, i2, i3}, and four dependent components (F1,R
−c
F1

), (F2,R
−c
F2

),

(F3,R
−c
F3

), and (F4,R
−c
F4

) where F1 = {i5, i6, i7}, F2 = {i8, i9, i10, i11, i12}, F3 = {i13}, and F4 =
{i14, i15, i16}. Thus, S = {(F0,R

−c
F0

)} and D = {(F1,R
−c
F1

), (F2,R
−c
F2

), (F3,R
−c
F3

), (F4,R
−c
F4

)}.
To verify these observations, note that all incompatible pairs in F0 can be matched with each

other and c0 is not needed to be matched. On the other hand, in each of F1, ...,F4, all but one
pair can be matched with other pairs within the same set. Pairs c1 and i4 can be used to match
the remaining pair in two of the F1, ...,F4. That is the only way to match the maximum number
of incompatible pairs and hence obtain a Pareto-efficient matching (cf. Proposition 1). There-
fore, for any incompatible pair i ∈ Fk for k = 1, ...,4, there exists a Pareto-efficient matching
that leaves i unmatched. These observations imply that U(N−c,R−c) = F1 ∪ F2 ∪ F3 ∪ F4,
O(N−c,R−c) = {c1, i4}, and P(N−c,R−c) = F0.

Hence, under all Pareto-efficient matchings, all pairs but one in each of F1,F2,F3,F4 are
matched with one another, and both overdemanded pairs, c1 and i4, are matched with pairs in
F1,F2,F3,F4, and hence all incompatible pairs in F0 are matched with other pairs in F0. More-
over, the set of underdemanded pairs consists of the pairs in dependent components and the set
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of perfectly matched pairs consists of the pairs in self-sufficient components. These observations
will be important to understand the implications of Theorem 1 given below. �

The following result characterizes the structure of the set of Pareto-efficient matchings for
problem (N,R).

Theorem 1. Given a problem (N,R), let (K,RK) be the subproblem with K = N \ O(N,R)

(i.e. the subproblem where all overdemanded pairs are removed) and let μ be a Pareto-efficient
matching for the original problem (N,R). Then,

1. For any pair x ∈ O(N,R), μ(x) ∈ U(N,R).
2. (a) For any self-sufficient component (L,RL) of (K,RK), L ⊆ P(N,R), and

(b) for any incompatible pair i ∈ L ∩ NI , μ(i) ∈ L \ {i}.
3. (a) For any dependent component (J,RJ ) of (K,RK), J ⊆ U(N,R), and for any pair

i ∈ J , it is possible to match all remaining pairs in J with each other.
(b) Moreover, for any dependent component (J,RJ ) of (K,RK), either

i. one and only one pair i ∈ J is matched with a pair in O(N,R) in the Pareto-efficient
matching μ, whereas all remaining pairs in J are matched with each other (so that
all pairs in J are matched), or

ii. one pair i ∈ J remains unmatched in the Pareto-efficient matching μ, whereas all
remaining pairs in J are matched with each other (so that only i remains unmatched
among pairs in J ).

Our proof strategy is based on an induction on the number of compatible pairs, as this ap-
proach helps us to execute a very useful comparative static exercise on how the structure of
Pareto-efficient matchings evolves with the addition of a single compatible pair to the pool of
pairs. These comparative static results are proven within the proof of the theorem as Claims 1
and 6.

Before we prove our theorem, we illustrate our proof technique and claims through an exam-
ple:

Example 2. (Continuation of Example 1.) We add a new compatible pair, c, to the problem in
Fig. 1. Let the new problem be denoted as (N,R). Two cases are possible:

Case 1. Pair c is not mutually compatible with any underdemanded pair of (N−c,R−c)11: In
this case, either c by itself becomes a self-sufficient component of (N,R) or it joins one
or more self-sufficient components of (N−c,R−c) to form a new self-sufficient com-
ponent of (N,R). We have O(N,R) = O(N−c,R−c) and D(N,R) = D(N−c,R−c).
Moreover, the remaining self-sufficient components of (N−c,R−c) become the other
self-sufficient components of (N,R).

Case 2. Pair c is mutually compatible with some underdemanded pair of (N−c,R−c)12: Two
subcases are possible:
(a) Compatible pair c, potentially together with some overdemanded and perfectly

matched pairs of (N−c,R−c), joins some underdemanded pairs of (N−c,R−c) to

11 This case is covered by Claim 1 in the proof of Theorem 1.
12 This case is covered by Claim 6 in the proof of Theorem 1.
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Fig. 2. Problem (N,R) in Example 2 – Case 2(a).

form a new self-sufficient component: This subcase is illustrated with an example in
Fig. 2. Pair c is mutually compatible with the underdemanded pair i10 of dependent
component (F2,R

−c
F2

) of (N−c,R−c). In this case c, overdemanded pair c0, depen-

dent components (F1,R
−c
F1

) and (F2,R
−c
F2

), and self-sufficient component (F0,R
−c
F0

)

of (N−c,R−c) form the only self-sufficient component of (N,R). Overdemanded
pair i4 of (N−c,R−c) becomes the only overdemanded pair of (N,R). Dependent
components (F3,R

−c
F3

) and (F4,R
−c
F4

) of (N−c,R−c) become the dependent com-
ponents of (N,R).

(b) Compatible pair c becomes a new overdemanded pair: This subcase is illustrated
with an example in Fig. 3. Pair c is mutually compatible with underdemanded pairs
i10 and i13 of two distinct dependent components of (N−c,R−c). In this case c joins
the overdemanded pairs of (N−c,R−c) to form the set of overdemanded pairs of
(N,R). The dependent and self-sufficient components of (N,R) are identical to
those of (N−c,R−c). �

We will rely on the following well-known result by [9] in our proof of Theorem 1:

Hall’s Theorem. Consider a graph with two finite sets X, Y such that each member of X is con-
nected with some members of Y . For any X′ ⊆ X, let N (X′,Y) ⊆ Y denote the set of members
of Y each of which is connected with at least one member of X′. Then, we can match each x ∈ X

with a distinct connected member of Y if and only if

∀X′ ⊆ X,
∣∣N (

X′,Y
)∣∣ ≥ ∣∣X′∣∣.
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Fig. 3. Problem (N,R) in Example 2 – Case 2(b).

Proof of Theorem 1. We use an induction on the number of compatible pairs. Fix s ≥ 0. Let N

have s + 1 compatible pairs including pair c. Let N−c = N \ {c}. Clearly N−c has s compatible
pairs. Let (N−c,R−c) be the problem such that R−c = RN−c . The initial step, i.e., the case with
no compatible pairs, was proven by Gallai [5,6] and Edmonds [4], and we refer to this result as
the Gallai–Edmonds Decomposition (or GED for short) Theorem. Now, for induction, we make
the following assumption:

Induction Assumption. Theorem 1 holds for problem (N−c,R−c).

Since U(N,R) ⊆ NI , c /∈ U(N,R). Depending on whether it is mutually compatible with an
underdemanded pair of (N−c,R−c) or not, our proof strategy will differ. Below we show that
when the latter is the case, nothing changes for the demand decomposition except c becoming a
perfectly matched pair of (N,R):

Claim 1. If c is not mutually compatible with any pair in U(N−c,R−c) then

1. U(N,R) = U(N−c,R−c),
2. O(N,R) = O(N−c,R−c), and
3. P(N,R) = P(N−c,R−c) ∪ {c}.

Moreover, Theorem 1 holds for problem (N,R).
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Proof of Claim 1. We will prove U(N,R) = U(N−c,R−c), part 1, which will immediately
prove parts 2 and 3 of the claim.

• First, we will show that U(N,R) ⊇ U(N−c,R−c): Let η′ ∈ E(N−c,R−c). We must show
that η′ ∈ E(N,R). Suppose not. Then there exists a matching μ ∈ M(N,R) that Pareto-
dominates η′ under (N,R). Observe that μ(c) 	= c, for otherwise μ ∈ M(N−c,R−c) and
it would Pareto-dominate η′ under (N−c,R−c) as well. Therefore, since c is not mu-
tually compatible with any pair in U(N−c,R−c), μ(c) ∈ O(N−c,R−c) ∪ P(N−c,R−c).
Let μ′ = μ \ {(μ(c), c)}. Since μ Pareto-dominates η′ under (N,R), |Iμ| > |Iη′ |. Hence,
|Iμ′ | ≥ |Iη′ |. As μ′ ∈ M(N−c,R−c), by Proposition 1, this inequality should hold with
equality and μ′ ∈ E(N−c,R−c). Recall that compatible pairs can only be matched with
incompatible pairs. Thus, μ(c) is an incompatible pair. However, μ(c) is unmatched un-
der μ′, contradicting μ(c) ∈ O(N−c,R−c) ∪ P(N−c,R−c). Thus, η′ ∈ E(N,R). This im-
plies E(N,R) ⊇ E(N−c,R−c), which in turn implies U(N,R) ⊇ U(N−c,R−c).

• Next, we will show that U(N,R) ⊆ U(N−c,R−c): We have already shown that E(N,R) ⊇
E(N−c,R−c). This together with Proposition 1 implies for any μ ∈ E(N,R) and μ′ ∈
E(N−c,R−c), |Iμ| = |Iμ′ |. Let i ∈ U(N,R) and ν ∈ E(N,R) such that ν(i) = i. Let
μ′ ∈ E(N−c,R−c). Observe that c is not matched under μ′ and μ′ ∈ E(N,R). By Proposi-
tion 2, there exists η ∈ E(N,R) such that Mη = Cμ′ ∪ I ν . Since c /∈ Mη , η ∈M(N−c,R−c).
Moreover since Iη = I ν , E(N,R) ⊇ E(N−c,R−c) along with Proposition 1 implies η ∈
E(N−c,R−c). Observe that η(i) = i. Thus i ∈ U(N−c,R−c), and hence U(N,R) ⊆
U(N−c,R−c).

Given the above three parts, we will show that Theorem 1 holds for (N,R). By induction as-
sumption 2(b), all incompatible pairs in P(N,R) = P(N−c,R−c) ∪ {c} can be matched within
the set without using c, which is compatible and not mutually compatible with any pair in
U(N,R) = U(N−c,R−c). Moreover, by induction assumptions 1 and 3(b), matching some pair
in P(N,R) with a pair in O(N,R) = O(N−c,R−c) would lead to a strictly lower number of
matched incompatible pairs in U(N,R) = U(N−c,R−c). Hence, Theorem 1 part 2(b) holds for
(N,R). Moreover, by induction assumptions 1 and 3(b), Theorem 1 parts 1 and 3(b) also hold.
Finally, Theorem 1 parts 2(a) and 3(a) follow from induction assumptions 2(a) and 3(a). �

Claim 1 covers the easier of the two cases. We will next build the machinery needed for the
harder case through a series of claims.

For any Q ⊆ O(N−c,R−c) ∪ {c} and F ⊆D(N−c,R−c), let

N (Q,F) ≡ {F ∈F : ∃a ∈ Q and i ∈ F such that ri,a = 1}.
That is, the “neighbors” of pairs in Q among dependent components of F are represented by the
set N (Q,F).13

First, we present the following corollary to the induction assumption:

Claim 2. For all Q ⊆ O(N−c,R−c), |N (Q,D(N−c,R−c))| > |Q|.

13 For simplicity, when it is not ambiguous, we will simply refer to a component by its set of pairs, i.e., we will refer to

F ∈ F instead of (F,R−c) ∈F .

F
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Proof of Claim 2. Suppose that for some Q ⊆ O(N−c,R−c), |N (Q,D(N−c,R−c))| ≤ |Q|.
Then, by the induction assumption, as all overdemanded pairs are matched in all efficient match-
ings of (N−c,R−c) to underdemanded pairs (by part 1), with at most one from each dependent
component (by part 3), it should be the case that |Q| = |N (Q,D(N−c,R−c))|. But then, as all
overdemanded pairs are always matched in an efficient matching, each pair in Q will be matched
with a pair in a distinct component of N (Q,D(N−c,R−c)) (by part 3(a) of the induction as-
sumption) and all remaining pairs in a component of N (Q,D(N−c,R−c)) will be matched with
another pair in the component (by part 3(b) of the induction assumption), and in particular, all
pairs in all components of N (Q,D(N−c,R−c)) will always be matched at all efficient match-
ings of (N−c,R−c), contradicting the claim that such pairs are underdemanded. We showed that
for all Q ⊆ O(N−c,R−c), |N (Q,D(N−c,R−c))| > |Q|. �

Our next claim follows easily from Claim 2:

Claim 3. Let c be mutually compatible with a pair in U(N−c,R−c). Then for all Q ⊆
O(N−c,R−c) ∪ {c}, |N (Q,D(N−c,R−c))| ≥ |Q|.

Proof of Claim 3. If Q = {c}, then by the hypothesis of the claim and the induction assumption,
which implies U(N−c,R−c) = ⋃

D∈D(N−c,R−c) D, we have |N (Q,D(N−c,R−c))| ≥ 1 = |Q|.
If Q 	= {c}, then let Q′ = Q \ {c}. We have |N (Q,D(N−c,R−c))| ≥ |N (Q′,D(N−c,R−c))| ≥
|Q′| + 1 ≥ |Q|, where the second inequality follows from Claim 2. �

We are ready to identify pairs whose roles in the structure of Pareto efficient matchings will
differ between problems (N,R) and (N−c,R−c). Let c be mutually compatible with an under-
demanded pair of (N−c,R−c). Define

• Q̂ ≡ ⋃{Q ⊆ O(N−c,R−c) ∪ {c} : |N (Q,D(N−c,R−c))| = |Q|};
• F̂ =N (Q̂,D(N−c,R−c)); and
• F̂ = ⋃

F∈F̂ F .

Observe that by Claim 2, either c ∈ Q̂ or Q̂ = ∅.

Claim 4. |N (Q̂,D(N−c,R−c))| = |Q̂|.

Proof of Claim 4. Suppose Q′,Q′′ ⊆ O(N−c,R−c)∪{c} are such that |N (Q,D(N−c,R−c))| =
|Q| for each Q ∈ {Q′,Q′′}. It suffices to show that |N (Q′′ ∪ Q′,D(N−c,R−c))| = |Q′′ ∪ Q′|.
Suppose not. This and Claim 3 together imply

∣∣Q′′ ∪ Q′∣∣ <
∣∣N (

Q′′ ∪ Q′,D
(
N−c,R−c

))∣∣. (1)

Let F ′′ =N (Q′′,D(N−c,R−c)). Observe that

∣∣F ′′∣∣ = ∣∣Q′′∣∣, (2)

and

N
(
Q′′ ∪ Q′,D

(
N−c,R−c

)) =F ′′ ∪N
(
Q′ \ Q′′,D

(
N−c,R−c

) \F ′′). (3)
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By Relations (1) and (3),∣∣Q′′∣∣ + ∣∣Q′ \ Q′′∣∣ = ∣∣Q′′ ∪ Q′∣∣ <
∣∣N (

Q′′ ∪ Q′,D
(
N−c,R−c

))∣∣
= ∣∣F ′′∣∣ + ∣∣N (

Q′ \ Q′′,D
(
N−c,R−c

) \F ′′)∣∣ (4)

Relation (4) and Relation (2) together imply∣∣Q′ \ Q′′∣∣ <
∣∣N (

Q′ \ Q′′,D
(
N−c,R−c

) \F ′′)∣∣. (5)

Let F∩ =N (Q′′ ∩ Q′,D(N−c,R−c)). Then

N
(
Q′′ ∩ Q′,D

(
N−c,R−c

))
︸ ︷︷ ︸

=F∩

⊆N
(
Q′′,D

(
N−c,R−c

))
︸ ︷︷ ︸

=F ′′

. (6)

and

N
(
Q′ \ Q′′,D

(
N−c,R−c

) \F ′′) ⊆N
(
Q′ \ Q′′,D

(
N−c,R−c

) \F∩)
. (7)

Relations (5) and (7) imply∣∣Q′ \ Q′′∣∣ <
∣∣N (

Q′ \ Q′′,D
(
N−c,R−c

) \F∩)∣∣. (8)

Also observe that

N
(
Q′,D

(
N−c,R−c

)) =N
(
Q′′ ∩ Q′,D

(
N−c,R−c

))
︸ ︷︷ ︸

=F∩

∪N
(
Q′ \ Q′′,D

(
N−c,R−c

) \F∩)
. (9)

Relation (9) and |N (Q′,D(N−c,R−c))| = |Q′| imply∣∣Q′′ ∩ Q′∣∣ + ∣∣Q′ \ Q′′∣∣ = ∣∣Q′∣∣ = ∣∣N (
Q′,D

(
N−c,R−c

))∣∣
= ∣∣F∩∣∣ + ∣∣N (

Q′ \ Q′′,D
(
N−c,R−c

) \F∩)∣∣. (10)

Finally, we obtain the contradiction we have sought: Relations (8) and (10) imply∣∣Q′′ ∩ Q′∣∣ >
∣∣F∩∣∣ = ∣∣N (

Q′′ ∩ Q′,D
(
N−c,R−c

))∣∣,
contradicting Claim 3. Thus, |N (Q′′ ∪ Q′,D(N−c,R−c))| = |Q′′ ∪ Q′|. �

Next define

• G =D(N−c,R−c) \ F̂ .

We will use the following claim to invoke Hall’s Theorem to prove Theorem 1 for the harder of
our two cases.

Claim 5. Let c be mutually compatible with a pair in U(N−c,R−c). Then for all F ∈ G, and all
Q ⊆ (O(N−c,R−c) ∪ {c}) \ Q̂,∣∣N (

Q,G \ {F })∣∣ ≥ |Q|.
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Proof of Claim 5. Fix Q ⊆ (O(N−c,R−c) ∪ {c}) \ Q̂ and F ∈ G.
If |N (Q,G)| < |Q|, then∣∣N (

Q̂ ∪ Q,D
(
N−c,R−c

))∣∣ = ∣∣N (
Q̂,D

(
N−c,R−c

))∣∣︸ ︷︷ ︸
=|F̂ |=|Q̂|

+∣∣N (Q,G)
∣∣

< |Q̂| + |Q| = |Q̂ ∪ Q|,
contradicting Claim 3 as Q̂ ∪ Q ⊆ O(N−c,R−c) ∪ {c}.

If |N (Q,G)| = |Q|, then∣∣N (
Q̂ ∪ Q,D

(
N−c,R−c

))∣∣ = ∣∣N (
Q̂,D

(
N−c,R−c

))∣∣︸ ︷︷ ︸
=|F̂ |=|Q̂|

+∣∣N (Q,G)
∣∣

= |Q̂| + |Q| = |Q̂ ∪ Q|.
But this contradicts the maximality of Q̂ (i.e. the second part of Claim 4) since Q̂ ∪ Q ⊆
O(N−c,R−c) ∪ {c}. Hence,

∀Q ⊆ O
(
N−c,R−c

) \ Q̂,
∣∣N (Q,G)

∣∣ > |Q|.
Thus, we have

∀Q ⊆ O
(
N−c,R−c

) \ Q̂,
∣∣N (

Q,G \ {F })∣∣ ≥ |Q|. �
Finally, using the above preparatory claims, we characterize the demand decomposition when

c is mutually compatible with a pair in U(N−c,R−c):

Claim 6. Let c be mutually compatible with a pair in U(N−c,R−c). Then

1. U(N,R) = U(N−c,R−c) \ F̂ ,
2. O(N,R) = (O(N−c,R−c) ∪ {c}) \ Q̂, and
3. P(N,R) = P(N−c,R−c) ∪ Q̂ ∪ F̂ .

Moreover, Theorem 1 holds for problem (N,R).

Proof of Claim 6. First, we prove that U(N,R) = U(N−c,R−c) \ F̂ (part 1 of the claim), in
two steps:

1. First, we will show that U(N,R) ⊇ U(N−c,R−c) \ F̂ : Recall that G = D(N−c,R−c) \ F̂ .
Fix i ∈ U(N−c,R−c)\ F̂ . By part 3(a) of Theorem 1 for (N−c,R−c), i ∈ F for some F ∈ G.
In several steps, we will construct a matching μ ∈ M(N,R), which leaves i unmatched, and
show that it is efficient under (N,R).
(a) By Claim 5

∀Q ⊆ (
O

(
N−c,R−c

) ∪ {c}) \ Q̂,
∣∣N (

Q,G \ {F })∣∣ ≥ |Q|. (11)

By Relation (11) and Hall’s Theorem, we can match each pair in (O(N−c,R−c)∪ {c}) \
Q̂ with a pair in a distinct component of G \ {F }. Let μ match such pairs with each other.
At this point, some components of G \ {F } have only one pair matched under μ, whereas
the rest have all pairs unmatched. By part 3(a) of Theorem 1 for (N−c,R−c), we can
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also match still-unmatched |D| − 1 pairs in any component D ∈ G \ {F } with each other
and all pairs in F \ {i} with each other. Let μ also match such pairs with each other.
Observe that μ(i) = i.
By the definition of D(N−c,R−c) and construction of Q̂, any pair that belongs to
any dependent component D in G is mutually compatible only with pairs in D or
(O(N−c,R−c) ∪ {c}) \ Q̂. Also recall that each dependent component in G consists
of an odd number of incompatible pairs. Thus, so far,

μ ∈ arg max
ν∈M(N,R)

∣∣T ν ∩ [(
U

(
N−c,R−c

) \ F̂
) ∪ [(

O
(
N−c,R−c

) ∪ {c}) \ Q̂
]]∣∣,

(12)

i.e., the maximum possible number of pairs in the set (U(N−c,R−c) \ F̂ ) ∪
[(O(N−c,R−c) ∪ {c}) \ Q̂] receive a transplant under μ.

(b) Claim 3 and Q̂ ⊆ O(N−c,R−c) ∪ {c} imply

∀Q ⊆ Q̂,
∣∣N (

Q,D
(
N−c,R−c

))∣∣ ≥ |Q|. (13)

Hence, we can invoke Hall’s Theorem through Relation (13) once again and match each
pair in Q̂ with an incompatible pair in a distinct dependent component in F̂ . Let μ match
such pairs with each other. At this point, as |F̂ | = |N (Q̂,D(N−c,R−c))| = |Q̂|, one pair
in each D ∈ F̂ is matched under μ. By part 3(a) of Theorem 1 for (N−c,R−c), we can
also match yet-unmatched |D| − 1 pairs in each dependent component D ∈ F̂ with each
other. Let μ further be constructed to match such pairs with each other. Thus, μ matches
all pairs in Q̂ ∪ F̂ with each other, and so far μ is well defined. Moreover,

μ ∈ arg max
ν∈M(N,R)

∣∣T ν ∩ (Q̂ ∪ F̂ )
∣∣, (14)

i.e., the maximum possible number of pairs in the set Q̂∪ F̂ receive a transplant under μ.
(c) By part 2(b) of Theorem 1 for (N−c,R−c), we can further construct μ such that all in-

compatible pairs in P(N−c,R−c) are matched with other pairs in P(N−c,R−c). Hence,
μ is well defined and μ ∈ M(N,R). Moreover, having matched all incompatible pairs
in P(N−c,R−c),

μ ∈ arg max
ν∈M(N,R)

∣∣T ν ∩ P
(
N−c,R−c

)∣∣, (15)

i.e., the maximum possible number of pairs in the set P(N−c,R−c) receive a transplant
under μ.

By Eqs. (12), (14), and (15), |T μ| = maxν∈M(N,R) |T ν |. This together with Proposition 1
implies μ ∈ E(N,R). Since μ(i) = i, we have i ∈ U(N,R).

2. Next, we will show that U(N,R) ⊆ U(N−c,R−c) \ F̂ : It is possible to match all incom-
patible pairs in F̂ ∪ Q̂ ∪ P(N−c,R−c) with other pairs in the same set, as the matching μ

constructed above in step 1 does just that. By the definition of D(N−c,R−c) and construc-
tion of Q̂, any pair that belongs to any dependent component D in G = D(N−c,R−c) \ F̂
is mutually compatible with only pairs in D or (O(N−c,R−c) ∪ {c}) \ Q̂. Also recall that
such a component D consists of an odd number of incompatible pairs. Thus, to maximize
the number of incompatible pairs matched under (N,R), we need to match all pairs in
(O(N−c,R−c)∪ {c}) \ Q̂ with pairs in U(N−c,R−c) \ F̂ , at most one pair from each D ∈ G
with a pair in (O(N−c,R−c)∪{c})\Q̂, and |D|−1 pairs of D with each other. This is possi-
ble, as matching μ constructed above in step 1 does just that. Hence, as by Proposition 1 any
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efficient matching ν ∈ E(N,R) maximizes the number of incompatible pairs matched, we
should have all incompatible pairs in F̂ ∪ O(N−c,R−c) ∪ P(N−c,R−c) matched under ν,
implying any unmatched incompatible pair under ν must belong NI \ [F̂ ∪ O(N−c,R−c) ∪
P(N−c,R−c)] = U(N−c,R−c) \ F̂ . Hence U(N,R) ⊆ U(N−c,R−c) \ F̂ .

Thus, U(N,R) = U(N−c,R−c) \ F̂ , i.e., part 1 of the claim holds, which in turn implies parts 2
and 3 of the claim. These parts and the induction assumption – Theorem 1 parts 2(a) and 3(a)
for (N−c,R−c) – together imply that parts 2(a) and 3(a) of Theorem 1 hold for problem (N,R).
By induction assumption 2(b), all incompatible pairs in P(N−c,R−c) can be matched within
the set, and by the above construction in step 1(b) all incompatible pairs in Q̂ ∪ F̂ can be
matched within this set. Hence, all incompatible pairs in P(N,R) = P(N−c,R−c) ∪ Q̂ ∪ F̂

can be matched within itself. Moreover, if some pair in P(N,R) is matched with a pair in
O(N,R) = O(N−c,R−c) \ Q̂, then the facts that (1) all pairs in O(N,R) can be matched
with pairs in U(N,R) = U(N−c,R−c) \ F̂ such that each pair comes from a distinct compo-
nent of D(N,R) = D(N−c,R−c) \ F̂ (established in step 1(a) above), and (2) each component
in D(N,R) has an odd number of pairs, all of which but (any) one can be matched within the
component (from induction assumption 3(a)), imply that less than the maximum possible in-
compatible pairs are matched in (N,R). Hence, no pair in P(N,R) should be matched with a
pair in O(N,R) at an efficient matching of (N,R). Thus, Theorem 1 part 2(b) should hold for
(N,R). Then, the previous argument also implies that at most one pair from each component
from D(N,R) should be matched with a pair from O(N,R) and the rest should be matched
within the component to maximize the pairs matched, implying Theorem 1 parts 1 and 3(b) hold
for (N,R). �

We state an immediate corollary to the theorem regarding the relationships between under-
demanded pairs and dependent components, and similarly between perfectly matched pairs and
self-sufficient components.

Corollary 2. For any problem (N,R), U(N,R) = ⋃
K∈D(N,R) K and P(N,R) = ⋃

K∈S(N,R) K .

An immediate corollary to Claims 1 and 6 in the proof of Theorem 1 regards how the set of
underdemanded pairs changes when a compatible pair is added to the exchange pool.

Corollary 3. When a new compatible pair c is added to the exchange pool, the set of under-
demanded pairs weakly shrinks. That is, if there is a Pareto-efficient matching that leaves an
incompatible pair unmatched when c is added, then there exists a Pareto-efficient matching that
leaves the same pair unmatched without c added.

We conclude the section with four remarks on the structure of Pareto-efficient matchings.

Remark 1. Observe that Claims 1 and 6 in the proof of the theorem give a complete picture of
the evolution of the demand decomposition when a new compatible pair c joins the pool:

• If c is not mutually compatible with a pair in U(N−c,R−c), the overdemanded set and the set
of dependent components do not change; on the other hand, each self-sufficient component
of (N,R) is either a self-sufficient component of (N−c,R−c) or a super component that
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includes c and possibly some other self-sufficient components of (N−c,R−c). Moreover, c

becomes either itself a self-sufficient component or a member of a self-sufficient component.
• If c is mutually compatible with a pair in U(N−c,R−c), the overdemanded set is determined

through the removal of pairs in Q̂ from the prior overdemanded set union {c}, and
� each dependent component of (N,R) is a dependent component of (N−c,R−c) that is not

covered by the set F̂ ;
� each self-sufficient component of (N,R) is either a self-sufficient component of

(N−c,R−c) or is a super component containing the pairs in Q̂ ∪ F̂ , which have newly
joined the set of perfectly matched pairs, and possibly some self-sufficient components of
(N−c,R−c).

Remark 2. The number of incompatible pairs (un)matched in an efficient matching (when a
compatible pair joins the pool) can be fully determined through the same statistic prior to the
addition of compatible pair c. In the problem (N,R),

• If c is not mutually compatible with a pair in U(N−c,R−c), then any efficient matching
of (N,R) leaves |D(N−c,R−c)| − |O(N−c,R−c)| incompatible pairs unmatched, the same
number as an efficient matching of the problem (N−c,R−c).

• If c is mutually compatible with a pair in U(N−c,R−c), then any efficient matching of
(N,R) leaves |D(N−c,R−c)| − |O(N−c,R−c)| − 1 incompatible pairs unmatched, one
fewer than an efficient matching of the problem (N−c,R−c).

This remark requires a short proof:
The first bullet point is proven as follows. By E(N−c,R−c) ⊆ E(N,R) and Proposition 1,

|T μ′ | = |T μ| for all μ′ ∈ E(N−c,R−c) and μ ∈ E(N,R). By Theorem 1, any efficient matching
of (N−c,R−c) leaves |D(N−c,R−c)| − |O(N−c,R−c)| incompatible pairs unmatched. So does
any efficient matching of (N,R).

The second bullet point is shown as follows: Let i ∈ U(N−c,R−c) be such that ri,c = 1.
For an efficient matching μ′ ∈ E(N−c,R−c) with μ′(i) = i, we have μ = μ′ ∪ {(i, c)} ∈
M(N,R). Thus, μ matches one more incompatible pair than μ′, which leaves |D(N−c,R−c)|−
|O(N−c,R−c)| incompatible pairs unmatched by Theorem 1. Suppose μ /∈ E(N,R). Then,
by Proposition 1, there is a matching ν ∈ M(N,R) that matches more incompatible pairs
than μ. Matching ν would necessarily match c. Matching ν ′ = ν \ {(c,μ(c))} ∈ M(N−c,R−c)

will match one more incompatible pair than μ′. This through Proposition 1 contradicts μ′ ∈
E(N−c,R−c). Thus, μ ∈ E(N,R), completing the proof of Remark 2.

Remark 3. One other observation regards Corollary 1, which states the possibility of minimiz-
ing the number of compatible pairs matched in any efficient matching. Theorem 1 immediately
places a constraint on which compatible pairs need to be matched at all efficient matchings,
while we have more flexibility in deciding which ones to match or not: The compatible pairs in
NC ∩ O(N,R) should be matched at every efficient matching. On the other hand, the number of
required compatible pairs in NC ∩ P(N,R) can be optimized so that the minimum number of
compatible pairs in this set are matched at an efficient matching.

Remark 4. In practice, demand decomposition and Theorem 1 can be used to determine which
incompatible pairs will not be matched in a priority matching. Also, a priority matching can be
constructed using the demand decomposition. By the theorem, at most one incompatible pair
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from each dependent component remains unmatched in any efficient matching including a pri-
ority matching. Thus, all incompatible pairs except the lowest priority pair in each dependent
component will be matched. A procedure similar to the one reported in RSÜ [16], pp. 163–164,
can be used to determine which of the lowest priority pairs of dependent components will be
matched in a priority matching.

5. Conclusion

Motivated by the increased willingness of the transplantation community to consider altruis-
tically unbalanced kidney exchanges, we analyzed the impact of including compatible pairs in
kidney exchange. We showed that the GED structure that is available in the absence of compati-
ble pairs is also preserved when compatible pairs are present. Not only is the elegant structure of
the set of Pareto-efficient matchings preserved, the role played by compatible pairs is also highly
intuitive and structured. We have shown that the inclusion of each compatible pair benefits the
entire patient population; thus, unlike other design considerations that provide efficiency gains
at the expense of harming various subsets of patients, the inclusion of compatible pairs provides
much larger gains without any adverse distributional effects.

Motivated by our analysis, Yılmaz [22] considers the impact of inclusion of two-way list
exchanges on the system rather than altruistically unbalanced kidney exchanges (cf. RSÜ [15]).14

The idea is the integration of incompatible pairs who are willing to exchange the donor’s live
kidney with a deceased-donor kidney. He shows that the graph-theoretic structure of his model
can be interpreted as an extension of the graph-theoretic structure of our model. However, despite
the close relation between the two models, he shows that a GED-type decomposition no longer
exists for Pareto-efficient matchings in his framework. Moreover, the number of patients who
receive live-donor transplants no longer remains the same across Pareto-efficient matchings.15

His analysis shows that the GED structure cannot be taken for granted even in a relatively small
modification to our model.

Appendix A. Incentives in priority mechanism

Let P(�i ) be the set of allowable manipulations that pair i can make when its true preferences
are �i . These can be summarized as declaring some of the feasible exchanges infeasible for the
pair.

Formally, for each problem with underlying preference profile � = (�x)x∈N , let R[�] denote
the associated feasible exchange matrix. A mechanism is formally defined as a mapping φ from
the set problems to the set of feasible matchings such that φ(N,R) ∈ M(N,R). A mechanism
φ is dominant-strategy incentive compatible if for all i ∈ N , for all �, there is no �′

i∈ P(�i )

such that φ(N,R[�′
i ,�−i])(i) �i φ(N,R[�i ,�−i])(i). It turns out that a priority mechanism

is dominant-strategy incentive compatible16:

14 Unfortunately, from a practical point of view, list exchanges are rarely conducted and were never adopted outside
of New England. The reservations are due to strong ethical concerns regarding their adverse distributional effects on
deceased-donor waiting lists, and the exchange of a live-donor with a deceased donor is viewed to be unethical by many
doctors.
15 As a result, he only characterizes the structure of “p-maximum” matchings, i.e., Pareto-efficient matchings that maxi-
mize the number of ordinary kidney exchanges among the matchings that maximize the number of live-donor transplants.
16 The proof of Theorem 2 is almost the same as that of Theorem 1 of Roth, Sönmez, and Ünver [16]. Nevertheless, we
include it in here for the sake of completeness.
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Theorem 2. Any priority mechanism is dominant-strategy incentive compatible.

Proof of Theorem 2. We fix N throughout the proof. For each problem R, consider the
construction of a priority matching and sets of matchings E0(R),E1(R), ...,En(R) under the
natural ordering π = (1,2, ..., n) where NI = {1,2, ..., n} is the set of incompatible pairs
(we drop π from the subscript whenever possible). We define sets of incompatible pairs
M0(R),M1(R), ...,Mn(R) as

M0(R) = ∅ and

Mk(R) = {
i ∈ {1,2, ..., k} : μ(i) 	= i for any μ ∈ Ek(R)

}
for each k ∈ {1,2, ..., n}.

Note that Mk−1(R) ⊆ Mk(R) for any k ∈ {1,2, ..., n}.
Without loss of generality, we will prove the strategy-proofness of a priority mecha-

nism that selects a priority matching under the natural ordering for each problem. Let
φ be a priority mechanism for the natural ordering π and R = [ry,z]y,z∈N be a prob-
lem. Construct sets of matchings E0(R),E1(R), ...,En(R) and sets of incompatible pairs
M0(R),M1(R), ...,Mn(R).

No compatible pair can manipulate profitably, as all compatible pairs receive transplants under
φ at R.

Any incompatible pair j ∈ Mn(R) is matched at φ(R) ∈ En(R); hence, it cannot possibly
benefit by underreporting the set of pairs that it is compatible with under φ. Let j ∈ N\Mn(R).
Incompatible pair j is unmatched at φ(R). If incompatible pair j manipulates its preferences and
cannot change the underlying feasible exchange matrix R, then it cannot benefit. So we focus
on a manipulation of j that declares a mutually compatible pair to be incompatible. We will
prove that incompatible pair j cannot receive a transplant by this manipulation, and repeated
application of this argument will conclude the proof.

Let x ∈ N\{j} be such that rj,x = 1. Let R′ = [r ′
y,z]y,z∈N be the feasible exchange matrix

obtained from R by incompatible pair j declaring pair x to be incompatible. Note that M(R′) =
{μ ∈M(R) : μ(j) 	= x}. Construct sets of matchings E0(R′),E1(R′), ...,En(R′) and sets of pairs
M0(R′),M1(R′), ...,Mn(R′).

We conclude the proof with a claim that implies Mn(R′) = Mn(R). This together with
j /∈ Mn(R) implies that j /∈ Mn(R′).

Claim 7. For each k ∈ {0,1, ..., n},

(i) Mk(R′) = Mk(R) and
(ii) Ek(R′) = {μ ∈ Ek(R) : μ(j) 	= x}.

Proof of Claim 7. We prove it by induction.

• Let k = 0. By construction, M0(R′) = ∅ = M0(R). Since E0(R) = M(R), E0(R′) = M(R′)
and M(R′) = {μ ∈ M(R) : μ(j) 	= x}, we have

E0(R′) = M
(
R′) = {

μ ∈M(R) : μ(j) 	= x
} = {

μ ∈ E0(R) : μ(j) 	= x
}
.

• Let k > 0. For all � with 0 ≤ � < k assume that M�(R′) = M�(R) and E�(R′) = {μ ∈ E�(R) :
μ(j) 	= x}.
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We will prove that Mk(R′) = Mk(R) and Ek(R′) = {μ ∈ Ek(R) : μ(j) 	= x}. Consider in-
compatible pair k. We have either k ∈ Mk(R) or k /∈ Mk(R). We consider these two cases
separately:
1. k /∈ Mk(R): We have Mk(R) = Mk−1(R) and Ek(R) = Ek−1(R). For all η ∈ Ek−1(R),

η(k) = k. By the induction assumption Ek−1(R′) ⊆ Ek−1(R), therefore for all η ∈
Ek−1(R′), we have η(k) = k; and hence, k /∈ Mk(R′) and Ek(R′) = Ek−1(R′). This to-
gether with the induction assumption implies

Mk
(
R′) = Mk−1(R′) = Mk−1(R) = Mk(R) and

Ek
(
R′) = Ek−1(R′) = {

μ ∈ Ek−1(R) : μ(j) 	= j ′} = {
μ ∈ Ek(R) : μ(j) 	= x

}
.

2. k ∈ Mk(R): We have

Mk(R) = Mk−1(R) ∪ {k}
and

Ek(R) = {
μ ∈ Ek−1(R) : μ(k) 	= k

}
.

We prove the two statements separately:
(i) Let η ∈ En(R). Since k ∈ Mk(R) ⊆ Mn(R), η(k) 	= k. Since j /∈ Mn(R), η(j) = j .

These together with the induction assumption and En(R) ⊆ Ek−1(R) imply that η ∈
{μ ∈ Ek−1(R) : μ(j) 	= x} = Ek−1(R′). This together with η(k) 	= k implies that

Ek
(
R′) = {

μ ∈ Ek−1(R′) : μ(k) 	= k
}

(16)

and

Mk
(
R′) = Mk−1(R′) ∪ {k} = Mk−1(R) ∪ {k} = Mk(R).

(ii) First let η ∈ {μ ∈ Ek(R) : μ(j) 	= x}. Since η ∈ Ek(R) ⊆ Ek−1(R) and η(j) 	= x, we
have η ∈ {μ ∈ Ek−1(R) : μ(j) 	= x} = Ek−1(R′) where the last equality follows from
the induction assumption. Since k ∈ Mk(R) and η ∈ Ek(R), we have η(k) 	= k. These
imply that η ∈ {μ ∈ Ek−1(R′) : η(k) 	= k} = Ek(R′) by Eq. (16).
Next let η ∈ Ek(R′) = {μ ∈ Ek−1(R′) : μ(k) 	= k}. Since Ek(R′) ⊆ Ek−1(R′) ⊆
Ek−1(R) where the last set inclusion follows from the induction assumption, we
have η ∈ Ek−1(R). This together with η(k) 	= k implies that η ∈ {μ ∈ Ek−1(R) :
μ(k) 	= k} = Ek(R). Therefore Ek(R′) = {μ ∈ Ek(R) : μ(j) 	= x}, completing the
proof of the Claim as well as Theorem 2. �
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