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Prior to 2006, the United States Military Academy (USMA) matched cadets to military specialties

(branches) using a single category ranking system to determine priority. Since 2006, priority for
the last 25 percent of the slots at each branch has been given to cadets who sign a branch-of-choice

contract committing to serve in the Army for three additional years. Building on theoretical work

of Hatfield and Milgrom (2005) and Hatfield and Kojima (2010), Sönmez and Switzer (2013) show
that the resulting new matching problem not only has practical importance but also it fills a gap in

the market design literature. Even though the new branch priorities designed by the Department

of the Army fail a substitutes condition, the cumulative offer algorithm of Hatfield-Milgrom gives a
cadet-optimal stable outcome in this environment. The resulting mechanism restores a number of

important properties to the current USMA mechanism including stability, strategy-proofness and

fairness which not only increase cadet welfare consistent with OCSP goals but also provides the
Army with very accurate estimates of the effect of a change in the parameters of the mechanism on

number of man-year gains by the branch-of-choice incentive program. This new application also

shows that matching with contracts model have great potential to prescribe solutions to real-life
resource allocation problems beyond domains that satisfy the substitutes condition.
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1. INTRODUCTION

The matching with contracts model (Hatfield and Milgrom 2005) is widely consid-
ered as one of the most important advances of the last two decades in matching
theory. This powerful model embeds Gale and Shapley (1962) two-sided matching
model and Crawford and Knoer (1981) - Kelso and Crawford (1982) labor mar-
ket model , and it has given impetus to a flurry of theoretical research as well as
new applications of market design such as matching with regional caps by Kojima
and Kamada (2013), school choice with soft-caps by Hafalir, Yenmez and Yildirim
(2013), matching with slot-specific priorities by Kominers and Sönmez (2013), and
cadet-branch matching by Sönmez and Switzer (2013), Sönmez (2013). In this letter
we focus on the USMA cadet-branch matching application by Sönmez and Switzer
(2013).

2. THE MODEL

A cadet-branch matching problem consists of a finite set of cadets, denoted
I = {i1, i2, . . . , in}, a finite set of branches B = {b1, b2, . . . , bm}, a vector of branch
capacities q = (qb)b∈B , a set of “terms” or “prices” T = {t1, . . . , tk} ∈ Rk

+, a list of
cadet preferences �= (�i)i∈I over (B×T )∪{∅}, and a list of base priority rankings
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π = (πb)b∈B .
Here the function πb : I → {1, . . . , n} represents the base priority ranking at

each branch b ∈ B and πb(i) < πb(j) means that cadet i has higher claims to a slot
at branch b than cadet j, other things being equal. Often the base priority ranking
will be the same across all branches. In those cases we will refer to this uniform
priority ranking as the order-of-merit list and denote it by πOML. We assume
that the terms of a match increase in its index. That is, t1 < · · · < tk. A cadet who
is assigned the pair (b, t) commits to serving in the military for at least t years.

Cadet preferences over branch-price pairs are strict, and separable in B:

∀i ∈ I, ∀b, b′ ∈ B, ∀t, t′ ∈ T, (b, t) �i (b′, t) ⇐⇒ (b, t′) �i (b′, t′).

That is, each cadet has well-defined preferences over branches alone independent
of the price. We also assume that remaining unmatched is the last choice for each
cadet. Let P and Q denote the set of all strict preferences over (B × T )∪ {∅}, and
B respectively.

A contract x = (i, b, t) ∈ I×B×T specifies a cadet i, a branch b, and the terms
of their match. Let X ≡ I ×B × T denote the set of all contracts. An allocation
X ′ ⊂ X is a set of contracts such that each cadet appears in at most one contract
and no branch appears in more contracts than its capacity. Let X denote the set
of all allocations. For any allocation X ′ ∈ X and cadet i ∈ I, let X ′

i denote the
assignment of cadet i under X ′. Here X ′

i = (b, t) if (i, b, t) ∈ X ′, and X ′
i = ∅ if

cadet i has no contract in X ′.
An allocation X ′ is fair if

∀i, j ∈ I, X ′
j︸︷︷︸

=(b,t)

�i X
′
i ⇒ πb(j) < πb(i).

That is, a higher-priority cadet can never envy the full assignment of a lower-priority
cadet under a fair allocation.

A mechanism is a strategy space Si for each cadet i along with an out-
come function ϕ :

∏
i∈I Si → X that selects an allocation for each strategy vector

(s1, s2, . . . , sn) ∈
∏

i∈I Si. A direct mechanism is a mechanism where the strat-
egy space is simply the set of preferences over outcomes for each cadet i. A direct
mechanism is fair if it always selects a fair allocation. A direct mechanism ϕ is
strategy-proof if truthful preference revelation is dominant strategy.

Given two lists of base priority rankings π1, π2, we will say that π1 is an unam-
biguous improvement for cadet i over π2 if (1) the standing of cadet i is at least
as good under π1

b as π2
b for any branch b, (2) the standing of cadet i strictly better

under π1
b than π2

b for some branch b, and (3) the relative priority between all other
cadets remain the same between π1

b and π2
b for any branch b. A direct mechanism

respects improvements if a cadet never receives a strictly worse assignment as
a result of an unambiguous improvement.

3. THE USMA MECHANISM

For the case of USMA,
∑

b∈B ≥ |I|. That is, the total number of slots across
all branches is no less than the number of cadets. All cadets receive their branch
assignment through this mechanism and they are not allowed to declare any brach
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unacceptable. There are only two terms for USMA; T = {t1, t2} with t1 < t2.
We refer t1 as the base price, t2 as the increased price, and any contract with
increased price t2 as a branch-of-choice contract.

The (post-2006) USMA mechanism is not a direct mechanism and the space
is Si = Q× 2B for each cadet i under this mechanism. That is, each cadet is asked
to choose (1) a ranking of branches alone, and (2) a number of branches (possibly
none) under the USMA mechanism.

Fix a problem and let (Qi, Bi) be the strategy choice of cadet i under the USMA
mechanism. USMA interprets Qi as the preferences of the cadet i over branches
alone. The interpretation of the second element is somewhat more delicate. For
each branch b ∈ Bi, cadet i indicates a willingness to pay the increased price t2
in exchange for favorable treatment for the last 25 percent of slots in this branch.
Cadet i will need to pay the increased price only if he receives one of the last 25
percent of the slots for which he is favored.

For each branch b ∈ Bi, we will say that cadet i signs a branch-of-choice
contract. The following construction simplifies the description of the outcome
function. Given a strategy profile s = (Qi, Bi)i∈I , uniquely construct the adjusted
priority ranking π+

b : I → {1, . . . , n} for each branch b as follows: For any pair
of cadets i, j ∈ I,

π+
b (i) < π+

b (j) if b ∈ Bi and b 6∈ Bj ,
π+
b (i) > π+

b (j) if b 6∈ Bi and b ∈ Bj , and
π+
b (i) < π+

b (j) ⇐⇒ πb(i) < πb(j) otherwise.

That is, the adjusted priority ranking π+
b is consistent with the base priority ranking

πb, unless one of the cadets signs a branch of choice contract for branch b whereas
the other one does not. In that case the cadet who signs the branch-of-choice
contract is favored under the adjusted priority ranking.

The algorithm that determines the outcome of the USMA mechanism is remi-
niscent of the celebrated agent-proposing deferred acceptance algorithm (Gale and
Shapley 1962) with one important difference. While each branch b relies on the
base priority ranking πb to evaluate proposing cadets for the first 75 percent of the
slots, it uses the adjusted priority ranking π+

b for the remaining slots. In other
words cadets receive favorable treatment for the last quarter of slots for branches
they have signed a branch-of-choice contract. We are ready to formally define the
outcome function ψWP for the USMA mechanism.

Let λ ∈ [0, 1]. For a given strategy profile (Qi, Bi)i∈I , the USMA mechanism
determines its outcome with the following USMA algorithm:

Step 1 : Each cadet i “applies” to his top-choice under Qi.
Each branch b holds the top (1 − λ)qb candidates based on the base priority

ranking πb. Among the remaining applicants it holds the top λqb candidates based
on the adjusted priority ranking π+

b . Any remaining applicants are rejected.

In general, at

Step k : Each cadet i who is rejected at Step (k-1) “applies” to his next-choice
under Qi.

Each branch b reviews the new applicants along with those held from Step (k-1),
and holds the top (1−λ)qb based on the base priority ranking πb. For the remaining

ACM SIGecom Exchanges, Vol. 13, No. 1, June 2014, Pages 50–57



53 · T. Sönmez

slots, branch b considers all remaining applicants and holds the top λqb of them
based on the adjusted priority ranking π+

b . Any remaining applicants are rejected.

The algorithm terminates when no applicant is rejected. All tentative assign-
ments are finalized at that point. For any branch b,

(1) any cadet who is assigned one of the top (1 − λ)qb slots is charged the base
price t1,

(2) any cadet who is assigned one of the last λqb slots is charged

(a) the increased price t2 if he has signed a branch-of-choice contract for branch
b, and

(b) the base price t1 if he has not signed a branch-of-choice contract for branch
b.

Let ψWP(s) denote the outcome of USMA mechanism under s = (�′
i, Bi)i∈I .

Observe that when λ = 0, the second part of the strategy space becomes re-
dundant and the USMA algorithm reduces to agent-proposing deferred acceptance
algorithm. Hence the USMA mechanism is equivalent to agent-optimal stable mech-
anism for this special case. Indeed, since all base priorities are identical for the case
of USMA, the USMA mechanism further reduces to simple serial dictatorship in-
duced by order-of-merit list πOML. Both of these mechanisms are very well-behaved:
Not only do they always result in a fair allocation, but they also respect unambigu-
ous improvements and they are strategy-proof.

For the case of USMA, λ = 0.25, and for positive λ the analysis of the USMA
mechanism is somewhat more delicate. That is because not only may truthful
branch preference revelation be suboptimal under the USMA mechanism, but also
the optimal choice of branch-of-choice contracts is a challenging task. So why is a
mechanism that is clearly based on strategy-proof agent-optimal stable mechanism
distorting incentives? The reason for this failure is somewhat subtle, but the key
observation is the following. Under the USMA algorithm, each cadet is considered
for one of the “expensive” slots at a branch immediately after its slots at base
price, and more importantly before given an opportunity to propose to the cheaper
slots of a less desirable branch. This may cause an issue if a cadet prefers the less
preferred branch at base price to the more desirable brach at the increased price.
Loosely speaking the USMA mechanism tries to infer cadet preferences over branch-
price pairs from their submitted preferences over branches alone along with signed
branch-of-choice contracts, and essentially it assumes that the price consideration
is always secondary to the branch assignment for every cadet. To the extent that
this assumption fails, the USMA mechanism distorts incentives. The following
proposition summarizes the key shortcomings of the USMA mechanism.

Theorem 1. (Sönmez and Switzer 2013) Truth-telling may not be an optimal
strategy under the USMA mechanism. Furthermore, a Nash equilibrium outcome of
the USMA mechanism can be unfair, Pareto inferior to a fair allocation, and may
penalize cadets for unambiguous improvements.
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4. MATCHING WITH CONTRACTS

Fortunately it is possible fix the deficiencies of the USMA mechanism. This re-
quires relating cadet-branch matching to a recent model which has received a lot
of attention.

4.1 Choice Sets

The cadet-branch matching problem can be modeled as a special case of the match-
ing with contracts model (Hatfield and Milgrom 2005) that subsumes and unifies
the Gale and Shapley (1962) college admissions model and the Kelso and Crawford
(1982) labor market model, among others. The original matching with contracts
models is a two-sided matching model, and as such, each branch (hospitals in Hat-
field and Milgrom 2005) has preferences over sets of agent-term pairs. These hospi-
tal preferences induce a choice set from each set of contracts, and it is this choice
set (rather than hospital preferences) that relevant for cadet-branch matching.

In the present framework, branches are not agents and they do not have prefer-
ences. However, branches have priorities over cadet-price pairs, and these priorities
can also be represented via choice sets. This is the sense in which the cadet-branch
matching problem is a special case of matching with contracts.

In general, the choice set of branch b from a set of contacts X ′ depends on the
policy on who has higher claims for slots in branch b. We can represent the USMA
priorities, or any other priority structure by adequate construction of choice sets.

For a given priority structure for branch b, let Cb(X
′) denote the set of contracts

chosen from X ′ ⊆ X whereas Rb(X
′) ≡ X ′ \Cb(X

′) denote the rejected set from
X ′ ⊆ X. Given a set of contracts X ′ ⊆ X, we can formally define USMA choice
set as follows.

USMA Choice Set
Phase 0 : Remove all contracts that involve another branch b′ and add them

all to the rejected set Rb(X
′). Hence each contract that survives Phase 0 involves

branch b.

Phase 1 : For the first 0.75qb potential elements of Cb(X
′), choose the contracts

with highest-OML cadets one at a time. When two contracts of the same cadet
are available, choose the contract with the base price t1 and reject the other one.
Continue until either all contracts are considered or 0.75qb elements are chosen for
Cb(X

′). If the former happens, terminate the procedure and if the latter happens
proceed with Phase 2.1.

Phase 2.1 : For the last 0.25qb potential elements of Cb(X
′), give priority to

contracts with increased price t2. Hence in this phase only consider branch-of-
choice contracts and among them include in Cb(X

′) the contracts with highest-
OML cadets. If any cadet covered in Phase 2.1 has two contracts in X ′ reject the
contract with the base price t1. Continue until either all branch-of-choice contracts
are considered in X ′ or Cb(X

′) fills all qb elements. For the latter case, reject all
remaining contracts, and terminate the procedure. For the former case, terminate
the procedure if all contracts in X ′ are considered and proceed with the Phase 2.2
otherwise.

Phase 2.2 : By construction, all remaining contracts in X ′ have the base price
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t1. Include in Cb(X
′) the contracts with highest-priority cadets one at a time until

either all contracts in X ′ are considered or Cb(X
′) fills all qb elements. Reject any

remaining contracts.

4.2 Stable Cadet-Branch Matching

Since the seminal paper of Gale and Shapley (1962), the stability condition has
been central to the analysis of two-sided matching markets. In the context of
cadet-branch matching, an allocation X ′ is stable if (1) no cadet or branch is
imposed an unacceptable contract, and (2) there exists no cadet i, branch b, and
contract x = (i, b, t) ∈ X \X ′ such that (b, t) Pi X

′(i) and x ∈ Cb

(
X ′ ∪ {x}.

Three properties of choice sets, or equivalently branch priorities in our context,
have played an important role in the analysis of matching with contracts.

Priorities satisfy the irrelevance of rejected contracts (IRC) condition if

∀Y ⊂ X,∀z ∈ X \ Y z 6∈ C(Y ∪ {z}) =⇒ C(Y ) = C(Y ∪ {z}).

That is, the removal of rejected contracts shall not affect the choice set under the
IRC condition.

Priorities satisfy the law of aggregate demand (LAD) condition for branch b
if

X ′ ⊂ X ′′ ⇒ |Cb(X
′)| ≤ |Cb(X

′′)|

That is, the size of the chosen set never shrinks as the set of contracts grows under
the LAD condition.

Lemma 1. The USMA priorities satisfy both IRC and LAD conditions.

Of the three conditions, the third one plays an especially important role in the
two-sided matching literature. Priorities satisfy the substitutes condition for
branch b if for all X ′ ⊂ X ′′ ⊆ X we have Rb(X

′) ⊆ Rb(X
′′). That is, under

the substitutes condition any contract that is rejected from a set X ′ is also rejected
from any set X ′′ that contains X ′. Substitutes together with IRC imply that the set
of stable allocations is non-empty (Hatfield and Milgrom 2005, Aygün and Sönmez
2013).

The substitutes condition along with IRC condition have been very “handy” in
the analysis of matching with contracts: Fixed-point techniques in lattice theory has
strong implications under these conditions. In particular these conditions together
assure the existence of a stable allocation, and that the set of stable outcomes is
a lattice. Hatfield and Milgrom (2005) build their highly influential model around
these conditions. A recent paper by Echenique (2012) questions the value added of
the matching with contracts model.

Theorem 2. (Echenique 2012) The matching with contracts model can be em-
bedded within the Kelso and Crawford (1982) labor market model under the substi-
tutes condition.

Kominers (2012) extends this isomorphism to a many-to-many matching provided
that the two sides of the market can sign at most one contract.

The substitutes condition is key for both the above isomorphism to hold. Indeed
Echenique (2012) emphasizes that a recent theory paper by Hatfield and Kojima
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(2010) analyzes matching with contracts under weaker conditions, and his embed-
ding does not work under their conditions. One of the conditions offered in Hatfield
and Kojima (2010) is the following:

Elements of X are unilateral substitutes for branch b if, whenever a contract
x = (i, b, t) is rejected from a smaller set X ′ even though x is the only contract in X ′

that includes cadet i, contract x is also rejected from a larger set X ′′ that includes
X ′. While the lattice structure of the set of stable allocations no longer persists
under the unilateral substitutes condition, Hatfield and Kojima (2010) shows that
a number of important results survives this weakening of the substitutes condition.

It turns out that, the unilateral substitutes condition plays a key role in cadet-
branch matching:

Lemma 2. While USMA priorities do not satisfy the substitutes condition, they
satisfy the unilateral substitutes condition.

4.3 Cumulative Offer Algorithm and COSM

We refer the agent-optimal stable mechanism as cadet-optimal stable mechanism
(COSM) in the present context. The strategy space of each cadet is P under the
COSM, and hence it is a direct mechanism.

Fix branch priorities (and thus the choices sets). Given a preference profile
P ∈ P, the following cumulative offer algorithm (COA) (Hatfield and Milgrom
2005) can be used to find the outcome of COSM.
Step 1 : Start the offer process with the highest-merit-score cadet π(1) = i(1).

Cadet i(1) offers his first-choice contract x1 = (i(1), b(1), t) to branch b(1) that is
involved in this contract. Branch b(1) holds the contract if x1 ∈ Cb(1)({x1}) and
rejects it otherwise. Let Ab(1)(1) = {x1} and Ab(1) = ∅ for all b ∈ B \ {b(1)}.

In general, at

Step k : Let i(k) be the highest-merit-score cadet for whom no contract is cur-
rently held by any branch. Cadet i(k) offers his most-preferred contract xk =
(i(k), b(k), t) that has not been rejected in previous steps to branch b(k). Branch
b(k) holds the contract if xk ∈ Cb(k)(Ab(k)(k − 1) ∪ {xk}) and rejects it otherwise.
Let Ab(k)(k) = Ab(k)(k− 1)∪{xk} and Ab(k) = Ab(k− 1) for all b ∈ B \ {b(k− 1)}.

The algorithm terminates when all cadets have an offer that is on hold by a
branch. Since there are a finite number of contracts, the algorithm terminates after
a finite number T of steps. All contracts held at this final Step T are finalized and
the final allocation is

⋃
b∈B Cb(AT ).

Sönmez and Switzer (2013) build on the following result to fix the deficiencies of
the USMA mechanism.

Theorem 3. (Hatfield and Kojima 2010): Suppose the priorities satisfy the uni-
lateral substitutes condition along with IRC. Then the COA produces a stable allo-
cation that is weakly preferred by any cadet to any stable allocation. Moreover, if
priorities also satisfy the LAD condition then the induced COSM is strategy-proof.
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Remark 1. The IRC condition is implicit in Hatfield and Kojima (2010) and it
is not explicitly stated. The above interpretation, which is necessary in our frame-
work with branch priorities, is due to Aygün and Sönmez (2012).

Remark 2. The Echenique (2012) embedding does not work in our framework.
Hence, the cadet-branch matching problem is an application of matching with con-
tracts that is beyond the scope of Kelso and Crawford (1982) labor market model.

Let ϕUSMA denote COSM induced by USMA priorities. This mechanism, which is
a very modest deviation from the USMA mechanism, fixes all previously mentioned
deficiencies of the USMA mechanism.

Theorem 4. (Sönmez and Switzer 2013) The outcome of ϕUSMA is stable under
USMA priorities and it is weakly preferred by any cadet to any stable allocation.
Moreover ϕUSMA is strategy-proof, fair, and respects improvements.
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