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Abstract

Mechanisms that rely on course bidding are widely used at Business Schools in order to al-

locate seats at oversubscribed courses. Bids play two key roles under these mechanisms to infer

student preferences and to determine who have bigger claims on course seats. We show that these

two roles may easily conflict and preferences induced from bids may significantly differ from the

true preferences. Therefore these mechanisms which are promoted as market mechanisms do not

necessarily yield market outcomes. We introduce a Pareto-dominant market mechanism that can

be implemented by asking students for their preferences in addition to their bids over courses.
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1 Introduction

Allocation of course seats to students is one of the major tasks of registrar’s offices at most uni-

versities. Since demand exceeds supply for many courses, it is important to design mechanisms to

allocate course seats equitably and efficiently. Many business and law schools rely on mechanisms

based on course bidding to serve this purpose. The following statement is from Kellogg Course

Bidding System Rules:2

“The bidding is designed to achieve an equitable and efficient allocation of seats in classes when

demand exceeds supply.”

While not all schools use the same version, the following simplest version captures the main

features of a vast majority of these mechanisms:

1. Each student is given a positive bid endowment to allocate across the courses he considers

taking.

2. All bids for all courses and all students are ordered in a single list and processed one at a time

starting with the highest bid. When it is the turn of a bid, it is honored if and only if the student

has not filled his schedule and the course has not filled all its seats.

When the process terminates, a schedule is obtained for each student. Similarly a market-

clearing “price” is obtained for each course which is simply the lowest honored bid unless the

course has empty seats and in that case the price is zero. The version we describe is closest

to the version used by the University of Michigan Business School and thus we refer to it as

UMBS course-bidding mechanism. Schools that rely on this mechanism and its variants include

Columbia Business School, Haas School of Business at UC Berkeley, Kellogg Graduate School of

Management at Northwestern, Princeton University, and Yale School of Management.

UMBS course-bidding mechanism is inspired by the market mechanism and schools that rely

on this mechanism promote it as a market mechanism. Consider the following question and its

answer borrowed from University of Michigan Business School, Course Bidding Tips and Tricks:3

“ Q. How do I get into a course?

2http://www.kellogg.nwu.edu/script_html/CBSDEMO/cbs_demo.htm retrieved in 2003.
3http://webuser.bus.umich.edu/Departments/Admissions/AcademicServices/CurrentUpdates/BiddingTipsTricks.htm

retrieved in 2003.
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A. If you bid enough points to make market clear, a seat will be reserved for you in that section

of the course, up to class capacity.”

In this paper we show that, UMBS course-bidding mechanism does not necessarily yield a

market outcome and this is a potential source of efficiency loss part of which can be avoided by an

appropriate choice of a market mechanism. While UMBS course-bidding mechanism “resembles”

the market mechanism, there is one major aspect that they differ: Under UMBS course-bidding

mechanism, students do not provide direct information on their preferences and consequently

their schedules are determined under the implicit assumption that courses with higher bids are

necessarily preferred to courses with lower bids. For example consider the following statement

from the guidelines for Allocation of Places in Oversubscribed Courses and Sections at the School

of Law, University of Colorado at Boulder:4

“The second rule is that places are allocated by the bidding system. Each student has 100 bidding

points for each semester. You can put all your points in one course, section or seminar, or you

can allocate points among several. By this means, you express the strength of your preferences.”

The entire strategic aspect of course bidding is overseen under this interpretation of the role

of the bids. While the choice of bids is clearly affected by the preferences, it is not adequate to

use them as a proxy for the strength of the preferences. For example, if a student believes that

the “market clearing” price of a course will be low, it is suboptimal for him to bid highly for that

course regardless of how much he desires to be assigned a seat at that course. Indeed this point is

often made by the registrar’s offices. The following statement appears in the Bidding Instructions

of both Columbia Business School and Haas School of Business at UC Berkeley:5

“If you do not think a course will fill up, you may bid a token point or two, saving the rest for

courses you think will be harder to get into.”

Here is the crucial mistake made under the UMBS course-bidding mechanism: Bids play two

important roles under this mechanism.

1. Bids are used to infer student preferences, and

2. bids are used to determine who has a bigger claim on each course seat and therefore choice of

4http://www.colorado.edu/law/wait_list.html retrieved in 2003.
5http://www-1.gsb.columbia.edu/students/biddinginstructions.html and http://web.haas.berkeley.edu/Registrar

retrieved in 2003.
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a bid-vector is an important strategic tool.

These two roles may easily conflict: For example a student may be declined a seat at one

of his favorite courses, despite clearing the market, simply because he clears the market in “too

many” other less favorite courses. Indeed such bidding behavior is consistent with expected utility

maximization and thus it cannot be considered to be a mistake.

Once we understand what is wrong with UMBS course-bidding mechanism, it is relatively easy

“fixing” it: The key is “separating” the two roles of the bids and asking students to

1. submit their preferences, in addition to

2. allocating their bid endowment across the courses.

In this way the registrar’s office no longer needs to “guess” what student preferences are. While

there may be several market outcomes in the context of course bidding, choosing the “right” one

is easy because there is a market outcome which Pareto-dominates any other market outcome. We

show this by relating course bidding to two-sided matching markets (Gale and Shapley 1962). The

Pareto-dominant market outcome can be obtained via an extension of the celebrated Gale-Shapley

student-proposing deferred acceptance algorithm.

The mechanism design approach has recently been very fruitful in similar real-life resource

allocation problems. A pioneering example is the re-design of US hospital-intern market (cf. Roth

and Peranson 1999, Roth 2002). This approach also had influenced policies on other important

resource allocation problems, as well. For example, Abdulkadiroğlu and Sönmez (2003) show

how ideas in two-sided matching literature can be utilized to improve allocation of students to

schools by school choice programs, and consequently Boston and New York City public schools

started to use a version of one of their proposals (cf. Abdulkadiroğlu, Pathak, and Roth 2005, and

Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005). Roth, Sönmez, and Ünver (2004, 2005a) show

how live kidney exchanges can be organized to increase the welfare of the patients. Consequently,

two kidney exchange programs were established in the US based on these proposals (cf. Roth,

Sönmez, and Ünver 2005b). The current paper, to the best of our knowledge, is the first paper

to approach course bidding from a mechanism design perspective.6 We believe this approach may

be helpful in improving course-bidding mechanisms in practice.

6Prior to our paper, Brams and Kilgour (2001) study allocation of course seats to students via a mechanism

which does not rely on course bidding.
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2 Assignment of Course Seats to Students

There are a number of students each of whom should be assigned seats at a number of courses. Let

I = {i1, i2, . . . , in} denote the set of students and C = {c1, c2, . . . , cm} denote the set of courses.

Each course has a maximum capacity and similarly each student has a maximum number of courses

that he can take. Without loss of generality we assume that the maximum number of courses that

each student can take is the same.7 Let qI denote the maximum number of courses that can be

taken by each student and let qc denote the capacity of course c. We refer to any set of at most

qI courses as a schedule, any schedule with qI courses as a full schedule, and any schedule with

less than qI courses as an incomplete schedule. Note that ∅ is also a schedule and we refer to

it as the empty schedule. Each student has strict preferences over all schedules including the

empty schedule. We refer to a course c to be desirable if the singleton {c} is preferred to the

empty schedule. Let Pi denote the strict preferences of student i over all schedules and Ri denote

the induced weak preference relation.

Assigning a schedule to each student is an important task faced by the registrar’s office. A

matching is an assignment of courses to students such that

1. no student is assigned more courses than qI , and

2. no course is assigned to more students than its capacity.

Equivalently a matching is an assignment of a schedule to each student such that no course

is assigned to more students than its capacity. Given a matching μ, let μi denote the schedule of

student i under μ and let μc denote the set of students enrolled in course c under μ. Different

registrar’s offices rely on different methods to assign course seats to students. However methods

based on course bidding are commonly used at business schools and law schools in order to assure

that the assignment process is fair and course seats are assigned to students who value them most.

7It is straightforward to extend the model as well as the results

1. to the more general case where the maximum number of courses that can be taken by different students are

possibly different, and

2. to the case where each student can take a maximum number of credits.
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3 Course Bidding

At the beginning of each semester, each student is given a bid endowment B > 0. In order to

keep the notation at a minimum we assume that the bid endowment is the same for each student.

Each student is asked to allocate his bid endowment across all courses. Let bi = (bic1 , bic2 , . . . , bicm)

denote the bid vector of student i where bic ≥ 0 for each course c, and Σc∈C bic = B.

Course bidding is inspired by the market mechanism and hence student bids are used

• to determine the market clearing bid for each course, and

• to determine a schedule for each student.

More specifically consider the following mechanism which can be used to determine market

clearing bids as well as student schedules:

1. Order all bids for all courses and all students from highest to smallest in a single list.

2. Consider one bid at a time following the order in the list. When it is the turn of bid bic, the

bid is successful if student i has unfilled slots in his schedule and course c has unfilled seats. If

the bid is successful, then student i is assigned a seat at course c (i.e. the bid is honored) and the

process proceeds with the next bid in the list. If the bid is unsuccessful then proceed with the

next bid in the list without an assignment.

3. When all bids are handled, no student is assigned more courses than qI and no course is assigned

to more students than its capacity. Hence a matching is obtained. The market clearing bid of

a course is the lowest successful bid in case the course is full, and zero otherwise.

Variants of this mechanism are used at many schools including University of Michigan Business

School, Columbia Business School, Haas School of Business at UC Berkeley, Kellogg School of

Management at Northwestern University, Princeton University, and Yale School of Management.

The most basic version described above is closest to the version used at University of Michigan

Business School and we refer to it as UMBS course-bidding mechanism. While each of the

above schools use their own version, the points we make in this paper carry over. We next give a

detailed example illustrating the dynamics of the UMBS course-bidding mechanism.

Example 1: There are four students i1 − i4 each of whom should take two courses and three

courses c1 − c3 such that c1 has three seats, c2 has two seats, and c3 has four seats. Each student

has 100 bid points to allocate over courses c1 − c3 and student bids are given in the following
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matrix:
bic c1 c2 c3

i1 60 38 2

i2 48 22 30

i3 47 28 25

i4 45 35 20

Positive bids are ordered from highest to smallest as follows:

bi1c1 − bi2c1 − bi3c1 − bi4c1 − bi1c2 − bi4c2 − bi2c3 − bi3c2 − bi3c3 − bi2c2 − bi4c3 − bi1c3

We next process each bid, one at a time, starting with the highest bid: bi1c1 = 60: i1 is assigned

c1; bi2c1 = 48: i2 is assigned c1; bi3c1 = 47: i3 is assigned c1; bi4c1 = 45 is unsuccessful: c1 has no

seats left; bi1c2 = 38 : i1 is assigned c2; bi4c2 = 35 : i4 is assigned c2; bi2c3 = 30 : i2 is assigned

c3; bi3c2 = 28 is unsuccessful: c2 has no seats left; bi3c3 = 25: i3 is assigned c3; bi2c2 = 22 is

unsuccessful: i2 has a full schedule, c2 has no seats left; bi4c3 = 20: i4 is assigned c3; bi1c3 = 2 is

unsuccessful: i1 has a full schedule.

The outcome of UMBS course-bidding mechanism is⎛⎝ i1 i2 i3 i4

c1, c2 c1, c3 c1, c3 c2, c3

⎞⎠
with a market-clearing price vector of (47,35,0). ♦

Under the UMBS course-bidding mechanism, there can be two kinds of ties:

1. Bids of two or more students may be the same for a given course, and

2. a student may bid the same for two or more courses.

In practice, both kinds of ties are broken based on a previously determined lottery. We also

assume that throughout the paper.

4 Market Mechanism

Schools that rely on UMBS course-bidding mechanism promote it as a market mechanism. In this

section we will explore to what extent this is appropriate.
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Most business and law schools provide data on market-clearing bids of previous years. Based

on recent years’ bid-data and possibly some private information, students try to guess which

market-clearing bids they will face. Strictly speaking, it is possible that a student can influence

the market-clearing bids. However since there are hundreds of students in most applications, this

is rather unlikely. Throughout the paper we assume that students are price-takers under a belief

system and they do not try to influence the market clearing bids and do not take into consideration

the influence of other students’ behavior in formation of market clearing bids. Each student rather

forms a belief on market-clearing bids based on recent years’ bid-data and chooses an optimal bid.

What do we mean by price-taking behavior? Let p = (pc)c∈C ∈ IRm
+ be a price vector such

that for each c ∈ C, pc is the lowest bid required to clear a course. We assume that students have

beliefs about the market clearing bids of the courses. These beliefs are common to each student

and is given through a joint probability distribution function F (p) denoting the probability that

the market clearing prices will be less than or equal to p.

Each student i ∈ I has a utility function Ui : 2
C → IR defined over the schedules of courses

that represents his preferences Pi over the schedules.

Given a preference relation Pi over schedules and given a subset of courses D ⊆ C, let Chi(D)

denote the best schedule from D. Let U = (Ui)i∈I be a utility profile. A student is a price

taker with respect to belief system F if his objective is to maximize his expected utility

with respect to the common belief system F that is exogenously formed and does not take into

consideration the effect of his and other students’ preferences in formation of F. Utility maximizing

behavior implies that given a bid vector bi, student i chooses the best schedule of the courses that

are cleared by the bid vector bi. Given a set of courses D ⊆ C, the student will choose Chi (D),

whenever D is the whole set of courses cleared by bid vector bi, and the probability for that to

happen is

Pr
³
{pc ≤ bic}c∈D ∪ {pc > bic}c∈C\D |F

´
=

Z
{0≤pc≤bic}c∈D

Z
{pc>bic}c∈C\D

dF (p) .

Therefore, for any D ⊆ C, the expected (indirect) utility of a student stating bi under the

price-taking behavior with respect to F , denoted by UF
i (bi), is given by

UF
i (bi) =

X
D⊆C

Pr
³
{pc ≤ bic}c∈D ∪ {pc > bic}c∈C\D |F

´
Ui (Chi (D)) .
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A course bidding economy is denoted by (I, C, qI , qC , B, U, F ). We fix I, C, qI , qC and B

throughout the paper (except the appendix) and denote an economy by its utility profile and

belief system (U, F ).

A market equilibrium of economy (U,F ) is given by a triple (μ, b, p) where,

• μ is a matching and it is interpreted as a market outcome,

• b = [bic]i∈I,c∈C is a bid matrix and interpreted as equilibrium bid matrix, and

• p = (pc)c∈C ∈ IRm
+ is a price vector and interpreted as the vector of realized market-clearing

prices,

such that

1. (expected utility maximization with respect to price-taking behavior under F ) for any student

i ∈ I, there is a bid vector b+i such that b
+
i = argmax c∈C b∗ic≤B UF

i (b
∗
i ) .

2. (tie breaking) A positive tie-breaker lottery value λi is randomly generated for each student

such that λi 6= λj for all {i, j} ⊆ I, and maxi∈I λi < mini,j∈I,c∈C : b+ic>b
+
jc>0

b+ic − b+jc. Equilibrium

bid matrix b is formed as follows using these tie-breakers: for each student i and course c, bic =⎧⎨⎩ b+ic + λi if b+ic > 0

0 if b+ic = 0
.

3. (market clearing) for any student i and any schedule s 6= μi, if bic ≥ pc for all c ∈

s, then Ui (μi) > Ui (s) ,

4. (prices) for any course c ∈ C, pc =

⎧⎨⎩ mini∈I {bic : c ∈ μi} if |μc| = qc

0 if |μc| < qc
.

Here (1) states that student i determines his bid vector bi using expected utility maximization

under the belief system F , (2) states that a tie-breaking lottery is generated to break ties among

student bids for the same course and these values are added to the bid matrix, (3) states that his

schedule μi is better than any other schedule he could afford, and (4) states that the market-

clearing price of a course is the lowest successful bid, if the course has no seats left, and zero,

otherwise. Under the price-taking assumption with respect to a belief system, we do not force

the belief system to be endogenously derived through the best response of the student’s behavior

to other students’ behavior. Hence, our requirement eliminates the need of the students to have

information or beliefs about other students’ information and converts the students’ problem to a

decision making problem. Since (2) is a non-standard condition, we elaborate on it further. As
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beliefs need not to be consistent with the outcome, the tie-breaker plays the role of a rationing

device to determine who will be assigned a course if multiple students clear the course and yet only

a portion of these bids can be honored. If we did not use the tie-breaker, a market equilibrium

may cease to exist.

Observe that an equilibrium bid matrix exists, if F is continuous in the domain of the bids

or the bids are only integer-valued. Throughout the paper, we assume that bids are only integer-

valued.

We refer to a mechanism as amarket mechanism if it always selects a market outcome when

students behave as expected utility maximizers under a belief system to choose the messages they

send to the mechanism.

4.1 Is UMBS Course-Bidding Mechanism a Market Mechanism?

Given that UMBS course-bidding mechanism is widely used in real-life implementation and given

that it is promoted as a market mechanism, it is important to understand whether this mechanism

indeed yields a market outcome. There is one major difficulty in this context: While the market

equilibrium depends on bids as well as student preferences under a given belief system, UMBS

course-bidding mechanism merely depends on bids. Business and law schools which use UMBS

course-bidding mechanism implicitly assume that bids carry sufficient information to infer the

student preferences and thus it is not necessary to inquire student preferences. Since higher bids

are processed before lower bids, they implicitly assume that

1. for any student i and any pair of courses c, d, bic > bid if and only if {c}Pi{d}, and

2. a. for any student i, any course c, and any incomplete schedule s with c 6∈ s,

{c}Pi∅ if and only if (s ∪ {c})Pis, and

b. for any student i, any pair of courses c, d, and any incomplete schedule s with c, d 6∈ s,

{c}Pi{d} if and only if (s ∪ {c})Pi(s ∪ {d}).

That is,

1. whenever a student bids higher for a course c than another course d, he necessarily prefers a

seat at c to a seat at d, and

2. this preference ranking is independent of the rest of his schedule.
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The first assumption relates induced bids to preferences over courses, and we refer to it as

bid-monotonicity. The second assumption relates preferences over schedules to preferences over

courses and it is known as responsiveness (Roth 1985) in the matching literature. So a key

issue is whether it is appropriate to have induced bids that are monotonic and preferences are

responsive.

4.2 Are Bids Monotonic?

It turns out that bid-monotonicity is not a realistic assumption under expected utility maximiza-

tion. If a student believes that the market-clearing price of a course will be low, it is sub-optimal

for him to bid highly for that course regardless of how much he desires to be assigned a seat at

this course. Indeed, this point is often made by the registrar’s office. This not only violates bid-

monotonicity, but more importantly may result in a non-market outcome as well as in efficiency

loss. The following example is built on this simple intuition.

Example 2: Consider a student i who shall register up to qI = 5 courses and suppose there are

six courses. His utility for each individual course is given in the following table

Course c1 c2 c3 c4 c5 c6

Utility 150 100 100 100 100 100

and his utility for a schedule is additively-separable

Ui(s) = Σc∈sUi(c).

Student i has a total of B = 1001 points to bid over courses c1 − c6 and the minimum acceptable

bid is 1. Based on previous years’ bid-data, student i has the following belief on the market

clearing bids:

• Market clearing bid for course c1 will be 0 with probability 1.

•Market clearing bids for the courses in c2−c6 have independent identical cumulative distribution

functions and for any of these courses c, the cdf Fc is strictly concave with Fc(200) = 0.7, Fc(250) =

0.8, and Fc(1001) = 1. That is, for each of the courses c2− c6, student i believes that the market-

clearing bid will be no more than 200 with 70% probability and no more than 250 with 80%

probability.
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Assuming that he is an expected utility maximizer, we next find the optimal bid-vector for

student i: By first order necessary conditions and symmetry, student i shall bid 1 for course c1,

and the same value for each course c ∈ {c2, c3, c4, c5, c6} for which he devotes a positive bid.8

Therefore, the optimal bid-vector is in the form: bic1 = 1, bic = 1000/k for any k of courses

c2 − c6. We next derive the expected utility of each such possibility.

Case 1 : b1ic1 = 1, b
1
ic2
= b1ic3 = b1ic4 = b1ic5 = b1ic6 = 200,

u1 = Pr{pc2 ≤ 200, pc3 ≤ 200, pc4 ≤ 200, pc5 ≤ 200, pc6 ≤ 200}Ui({c2, c3, c4, c5, c6})

+ 5Pr {pc2 > 200, pc3 ≤ 200, pc4 ≤ 200, pc5 ≤ 200, pc6 ≤ 200}Ui({c1, c3, c4, c5, c6})

+ 10Pr{pc2 > 200, pc3 > 200, pc4 ≤ 200, pc5 ≤ 200, pc6 ≤ 200}Ui({c1, c4, c5, c6})

+ 10Pr{pc2 > 200, pc3 > 200, pc4 > 200, pc5 ≤ 200, pc6 ≤ 200}Ui({c1, c5, c6})

+ 5Pr{pc2 > 200, pc3 > 200, pc4 > 200, pc5 > 200, pc6 ≤ 200}Ui({c1, c6})

+ Pr{pc2 > 200, pc3 > 200, pc4 > 200, pc5 > 200, pc6 > 200}Ui({c1})

= 0.75 × 500 + 5× 0.74(1− 0.7)550 + 10× 0.73(1− 0.7)2450

+ 10× 0.72(1− 0.7)3350 + 5× 0.7(1− 0.7)4250 + (1− 0.7)5150 = 474.79

Case 2 : b2ic1 = 1, b
2
ic2
= b2ic3 = b2ic4 = b2ic5 = 250, b

2
ic6
= 0.

u2 = Pr{pc2 ≤ 250, pc3 ≤ 250, pc4 ≤ 250, pc5 ≤ 250}Ui({c1, c2, c3, c4, c5})

+ 4Pr {pc2 > 250, pc3 ≤ 250, pc4 ≤ 250, pc5 ≤ 250}Ui({c1, c3, c4, c5})

+ 6Pr {pc2 > 250, pc3 > 250, pc4 ≤ 250, pc5 ≤ 250}Ui({c1, c4, c5})

+ 4Pr {pc2 > 250, pc3 > 250, pc4 > 250, pc5 ≤ 250}Ui({c1, c5})

+ Pr {pc2 > 250, pc3 > 250, pc4 > 250, pc5 > 250}Ui({c1})

= 0.84 × 550 + 4× 0.83(1− 0.8)450 + 6× 0.82(1− 0.8)2350

+ 4× 0.8(1− 0.8)3250 + (1− 0.8)4 150 = 470.0

8For simplicity of exposition, we assume that beliefs regarding the market-clearing bids are independent across

courses. We will use this simplifying assumption in our other examples, as well. Our examples can be generalized

to a situation, in which the beliefs about the market-clearing bids of various courses are dependent on each other.
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Since expected utility of bidding for three or less of courses c2 − c6 can be no more than

150 + 3× 100 = 450, the optimal bid vector for student i is b1i with an expected utility of 474.79.

There are two important observations we shall make. The first one is an obvious one: The optimal

bid for the most deserved course c1 is the smallest bid violating bid-monotonicity. The second

point is less obvious but more important: If the beliefs are consistent with the real bid distribution,

under the optimal bid b1i , student i is assigned the schedule s = {c2, c3, c4, c5, c6} with probability

0.75 = 0.168. So although the bid b1ic1 = 1 is high enough to claim a seat at course c1, since it is

the lowest bid, student i is not assigned a seat in an available course under UMBS course-bidding

mechanism. ♦

Therefore, the outcome of UMBS course-bidding mechanism cannot be supported as a market

outcome and this weakness is a direct source of efficiency loss. To summarize:

1. how much a student bids for a course under UMBS course-bidding mechanism is not necessarily

a good indication of how much a student wants that course,

2. as an implication the outcome of UMBS course-bidding mechanism cannot always be supported

as a market outcome, and

3. UMBS course-bidding mechanism may result in unnecessary efficiency loss due to not seeking

direct information on student preferences.

5 Gale-Shapley Pareto-Dominant Market Mechanism

While UMBS course-bidding mechanism is very intuitive, it makes one crucial mistake: Bids play

two possibly conflicting roles under this mechanism:

1. Bids are used to determine who has a bigger claim on each course seat and therefore choice of

a bid-vector is an important strategic tool.

2. Bids are used to infer student preferences.

As Example 2 clearly shows, these two roles can easily conflict. Fortunately it is possible to

“fix” this deficiency by utilizing the theory on two-sided matching markets developed by David

Gale, Lloyd Shapley, Alvin Roth and their followers. The key point is “separating” the two roles of

the bids. Under the proposed two-sided matching approach, students are not only asked to allocate

their bid endowment over courses but also to indicate their preferences over schedules. In order to
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simplify the exposition, we initially assume that preferences over schedules are responsive. Recall

that under responsiveness students can simply reveal their preferences over individual courses and

the empty schedule. Later on, we will show to what extent responsiveness can be relaxed.

We are now ready to adopt a highly influential mechanism in two-sided matching literature to

course bidding.

Gale-Shapley Pareto-Dominant Market Mechanism:

1. Students are ordered with an even lottery to break ties.

2. Each student strictly ranks the courses in order to indicate his preferences. It is sufficient to

rank only desirable courses.

3. Each student chooses a bid-vector.

4. Based on stated preferences, bids, and the tie-breaking lottery, a matching is obtained in

several steps via the following student-proposing deferred acceptance algorithm.

Step 1 : Each student proposes to his top qI courses based on his stated preferences. Each course

c rejects all but the highest bidding qc students among those who have proposed. Those who are

not rejected are kept on hold. In case there is a tie, the tie-breaking lottery is used to determine

who is rejected and who will be kept on hold.

In general, at

Step t : Each student who is rejected from k > 0 courses in Step (t-1) proposes to his best remaining

k courses based on his stated preferences. In case less than k courses remain, he proposes to all

remaining courses. Each course c considers the new proposals together with the proposals on hold

and rejects all but the highest bidding qc students. Those who are not rejected are kept on hold.

In case there is a tie, the tie-breaking lottery is used to determine who is rejected and who will

be kept on hold.

The procedure terminates when no proposal is rejected and at this stage course assignments are

finalized.

Let μGS denote the outcome of Gale-Shapley Pareto-dominant mechanism and let a price

vector p be determined as follows: For each course c with full capacity, pc is the lowest successful

bid and for each course c with empty seats, pc = 0.

Let P = (Pi)i∈I be the profile of (true) student preferences over schedules. Under respon-
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siveness, for each student i the preference relation Pi induces a strict ranking of all courses. We

already assumed that students are price takers under a belief system and thus they do not try

to influence the market-clearing bids and do not respond necessarily in a best responding way

to their fellow students. In the following lemma, we prove that under this behavior, it is (part

of) a weakly dominant strategy for the students state their preferences truthfully under the Gale-

Shapley Pareto-dominant market mechanism. Therefore under price-taking behavior with respect

to belief system F , the stated preferences of students over individual courses are their true pref-

erences.

Lemma 1 Let (U, F ) be an economy with responsive preferences over schedules. Then, revealing

preferences truthfully is part of an optimal decision for each student for the Gale-Shapley Pareto-

dominant market mechanism under price-taking behavior with respect to F.

The intuition behind this lemma is simple. Since in each round of the deferred acceptance

algorithm, each student proposes to his best schedule that has not rejected him yet, for a given

belief system he maximizes his ex-ante chances of being placed to the best possible schedule by

revealing his preferences truthfully.

Based on this lemma, from now on, we will assume that students reveal their preferences

truthfully to the Gale-Shapley Pareto-dominant market mechanism.

We are now ready to show that Gale-Shapley Pareto-dominant market mechanism functions

as a market mechanism when students behave as expected utility maximizers under price-taking

behavior under any common belief system.

Proposition 1 Let (U, F ) be an economy. Let P be a responsive preference profile represented

by U . Suppose that students reveal their preferences over courses and bid matrix b to the Gale-

Shapley Pareto-dominant market mechanism as expected utility maximizers under price-taking

behavior with respect to F and consistent with Lemma 1. Under (b, P ), let μGS be the outcome of

Gale-Shapley Pareto-dominant market mechanism as a result, and p be the induced price vector.

The triple (μGS, b, p) is a market equilibrium of the economy (U,F ).

It is easy to show that in general there can be several market outcomes induced by the same

equilibrium bid matrix. Consider the following example:
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Example 3 There are three students i1, i2, and i3 each of whom should take one course and three

courses c1, c2 and c3 each of which has one seat. The bid endowment of each student is 101 and

student utility profiles are given as follows:

U c1 c2 c3

i1 100 100− ε 0

i2 0 100 100− ε

i3 100− ε 0 100

where ε is positive and sufficiently small. Let P be the list of induced preferences by U . The

beliefs about the market clearing prices are independent and given as follows:

Fc(1) Fc (100) Fc (101)

c1 0.01 0.7 0.7

c2 0.01 0.8 0.8

c3 0.01 0.9 0.9

Suppose that Fc (h) is strictly convex between bids 1 and 100 for each course c.

Next, we determine the equilibrium bid matrix, when students behave as expected utility

maximizers under price-taking behavior with respect to F . By strict positivity and strict convexity

of the cumulative distribution functions between 1 and 100 and their constancy between 100 and

101, students will bid 100 to one of their two desirable courses and 1 for the other one. The ε

value is chosen sufficiently small such that they will bid 100 for the desirable course which has the

highest probability of clearance at bid 100. Hence, they generate the following bid matrix:

b∗ c1 c2 c3

i1 1 100 0

i2 0 1 100

i3 1 0 100

Suppose that to break the ties a uniform draw between 0 and 1 is determined for each student.

Let the following tie-breaking draw be added to positive bids of the students:

i1 i2 i3

tie-breaking lottery 0.1 0.3 0.2
,
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therefore, the resulting equilibrium bid matrix is given by:

b c1 c2 c3

i1 1.1 100.1 0

i2 0 1.3 100.3

i3 1.2 0 100.2

.

We will show that there are two market outcomes supported by this bid matrix. First, we can find

the first market outcome using Gale-Shapley Pareto-dominant market mechanism under (P, b):

μ =

⎛⎝ i1 i2 i3

c1 c2 c3

⎞⎠
is a market outcome with price vector p = (1.1, 1.3, 100.2) .

Let (ν, b, r) be a market equilibrium with ν 6= μ. Suppose ν (i1) 6= μ (i1) = c1. Since c1 is i1’s

first choice course, we need r1 > 1.1 = bi1,c1. In this case r1 = 1.2 = bi3,c1 , and ν (i3) = c1, since if

r1 were any higher, nobody could afford this course and it would have an empty slot, contradicting

r1 > 0. Thus, r3 > 100.2 = bi3,c3, since otherwise i3 can afford c3 and he prefers it to ν (i3) = c1,

contradicting that ν is a market outcome. Hence, r3 = 100.3 = bi2,c3 and ν (i2) = c3. If r3 were

any higher, nobody could afford it, and it would have an empty slot, contradicting r3 > 0. Thus,

r2 > 1.3 = bi2,c2 , since otherwise i2 can afford c2 and he prefers it to ν (i2) = c3, contradicting that

ν is a market outcome. Hence, r2 = 100.1 = bi1,c1. If r2 were any higher, nobody could afford it,

and it would have an empty slot, contradicting r2 > 0. Therefore, matching

ν =

⎛⎝ i1 i2 i3

c2 c3 c1

⎞⎠
together with price vector r = (1.2, 100.1, 100.3) and bid matrix b is another market equilibrium.

Observe that if we started the construction of market outcome ν with any other student than

i1, then we would still end up with the same matching ν. Therefore, matchings μ and ν are the

only market outcomes under equilibrium matrix b. Observe that the outcome of Gale-Shapley

Pareto-dominant market mechanism, μ, Pareto-dominates the other market outcome ν. ♦

The conclusion of this example can be generalized. That is, the outcome of Gale-Shapley

Pareto-dominant market mechanism is the “right” one: Thanks to its direct relation with two-

sided matching markets, the outcome of this mechanism Pareto dominates any other market

outcome.
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Proposition 2 Let (U,F ) be an economy such that the represented student preference profile, P,

by U is responsive. Let bid matrix b denote an equilibrium bid-matrix for (U,F ), and μGS be

the outcome of Gale-Shapley Pareto-dominant market mechanism for b and P . Matching μGS

Pareto-dominates any other matching μ that is market outcome of economy (U,F ) when b is the

equilibrium bid matrix.

5.1 Gale-Shapley Pareto-Dominant Market Mechanism and Efficiency

Replacing UMBS course-bidding mechanism with Gale-Shapley Pareto-dominant market mech-

anism eliminates inefficiencies that result from registrar’s offices using bids as a proxy of the

strength of the preferences.

While Gale-Shapley Pareto-dominant market mechanism Pareto dominates any other market

mechanism, there may be situations where all market outcomes are Pareto inefficient for the same

equilibrium bid matrix. The following example, which is inspired by a similar example in Roth

(1982), makes this point.9

Example 4 There are four students i1, i2, i3, and i4 each of whom should take one course and

four courses c1, c2, c3, and c4 each of which has one seat. The bid endowment of each student is

101 and student utility profiles are given as follows:

U c1 c2 c3 c4

i1 100 100− ε 0 0

i2 0 100 100− ε 0

i3 100− ε 0 100 0

i4 100 0 0 100− ε

where ε is positive and sufficiently small. Let P be the list of preferences induced by U . The

9See also Balinski and Sönmez (1999), Ergin (2002), and Abdulkadiroğlu and Sönmez (2003) for similar examples

in the context of school-student matching.
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beliefs about the market clearing prices are independent and given as follows:

Fc (1) Fc (100) Fc (101)

c1 0.01 0.8 0.8

c2 0.01 0.9 0.9

c3 0.01 0.7 0.7

c4 0.01 0.9 0.9

Suppose that Fc (h) is strictly convex between bids 1 and 100 for each course c. Hence each student

will bid 100 for one of the two desirable courses they have and 1 for the other one. In particular, ε

is chosen sufficiently small such that they will bid 100 for the course with the highest probability

of clearance at 100 (as in Example 3). This behavior generates the following bid matrix:

b∗ c1 c2 c3 c4

i1 1 100 0 0

i2 0 100 1 0

i3 100 0 1 0

i4 1 0 0 100

Suppose that to break the ties, a uniform draw between 0 and 1 is determined for each student.

Let the following tie-breaking draw be added to positive bids of the students:

i1 i2 i3 i4

tie-breaking lottery 0.3 0.2 0.1 0.4
,

therefore, the resulting equilibrium bid matrix is given by:

b c1 c2 c3 c4

i1 1.3 100.3 0 0

i2 0 100.2 1.2 0

i3 100.1 0 1.1 0

i4 1.4 0 0 100.4

We can find the outcome of the Gale-Shapley Pareto-dominant market mechanism as follows for

(b, P ):

μ =

⎛⎝ i1 i2 i3 i4

c2 c3 c1 c4

⎞⎠ .
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However, the following matching Pareto-dominates μ under P :

ν =

⎛⎝ i1 i2 i3 i4

c1 c2 c3 c4

⎞⎠ .

♦

Even though UMBS mechanism does not result with a market outcome in many cases, can

it be more efficient than the Gale-Shapley Pareto-dominant market mechanism? Under certain

conditions, the answer is no:

Proposition 3 Let (U, F ) be an economy. Let P denote the list of responsive student preferences

over schedules represented by U , bid matrix b denote an equilibrium bid-matrix for (U,F ), and

μGS be the outcome of Gale-Shapley Pareto-dominant market mechanism for (b, P ). Suppose that

in the economy (U,F ) under the UMBS mechanism, when the students maximize their expected

utility with respect to F , they also generate bid matrix b. Let μUMBS be the outcome of the UMBS

mechanism for b. Then μUMBS cannot Pareto-dominate μGS.

On the other hand, as the following example shows the best market outcome (i.e., the outcome

of the Gale-Shapley Pareto-dominant mechanism) may Pareto-dominate the outcome of the UMBS

mechanism under the same bid matrix consistent with expected utility maximization:

Example 3 continued If we use the UMBS mechanism here for the same economy given by

(U, F ) in Example 3, the students will submit the same bid matrix b∗ as in Example 3. If the

tie-breaking lottery is given as in Example 3, then b of Example 3 will be the bid matrix. We

remind b as follows:
b c1 c2 c3

i1 1.1 100.1 0

i2 0 1.3 100.3

i3 1.2 0 100.2

In this case, UMBS outcome is given by

ν =

⎛⎝ i1 i2 i3

c2 c3 c1

⎞⎠ ,
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which is Pareto-dominated by the Gale-Shapley Pareto-dominant market mechanism outcome

μ =

⎛⎝ i1 i2 i3

c1 c2 c3

⎞⎠ .

♦

It is worthwhile to note that if different bid matrices are generated as a result of expected

utility maximization with respect to a belief system under the two mechanisms, UMBS mechanism

outcome can ex-post Pareto-dominate the best market outcome. On the other hand, ex-ante, the

GS outcome will always Pareto-dominate the UMBS outcome, since a student can always mimic

the UMBS mechanism’s expected utility under the GS mechanism by submitting bid-monotonic

preferences and the UMBS optimal bid vector.

The following example shows that bid vectors can differ under the GS and UMBS mechanisms:

Example 5: Consider a student whose preferences over two courses are given by: U (c1) = 200,

U (c2) = 175. The student is given 1001 points to bid and he has to enroll in one course. He has

the following beliefs about the market clearing prices for the two courses:

Fc1(300) = 0.7, Fc1(500) = 0.8, Fc1(1001) = 0.9,

Fc2(500) = 0.6, Fc2(700) = 0.9, Fc2(1001) = 0.95.

It is easy to show that under the UMBS assignment mechanism the student will bid (501,500)

and that under the GS one he will bid either (300,701) or (301,700),with the two latter bids being

equivalent since they both imply the same probability distribution over outcomes. ♦

5.2 To What Extent Responsiveness Assumption Can Be Relaxed?

Responsiveness is a very convenient assumption because it simplifies the task of indicating pref-

erences over schedules to the much simpler task of indicating preferences over courses. However

in practice it may be violated because of many reasons. For instance:

1. A student may wish to bid for different sections of the same course. More generally a student

may bid for two courses he considers to be “substitutes” and may wish to take one or other but

not both.
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2. There can be additional difficulties due to timing of courses. A student may bid for two courses

meeting at the same time and hence it may not be possible to assign him seats in both courses

due to scheduling conflicts.

Therefore it is important to understand to what extent responsiveness assumption can be

relaxed so that Gale-Shapley Pareto-dominant market mechanism is still well-defined. We need

further notation in order to answer this question.

A preference relation Pi is substitutable (Kelso and Crawford 1982) if for any set of courses

D ⊆ C and any pair of courses c, d ∈ D,

c, d ∈ Chi(D) implies c ∈ Chi(D \ {d}).

Substitutability condition simply states that if two courses are both in the best schedule from a

set of available courses and if one of the courses becomes unavailable, then the other one is still

in best schedule from the smaller set of available courses. Substitutability is a milder assumption

on schedules than responsiveness and complications due to bidding for several alternate courses

or courses with conflicting schedules are easily handled under substitutability. That is because,

one can easily extend Gale-Shapley Pareto-dominant market mechanism when preferences are

substitutable.

Gale-Shapley Pareto-Dominant Market Mechanism under Substitutable Preferences:

1. Students are ordered with an even lottery to break ties.

2. Each student strictly ranks the schedules in order to indicate his substitutable preferences.10

3. Each student chooses a bid-vector.

4. Based on stated preferences, bids and the tie-breaking lottery a matching is obtained in several

steps via the following student-proposing deferred acceptance algorithm.

Step 1 : Each student proposes to courses in his best schedule out of all courses. Each course c

rejects all but the highest bidding qc students among those who have proposed. Those who are

not rejected are kept on hold. In case there is a tie, the tie-breaking lottery is used to determine

who is rejected and who will be kept on hold.

In general, at

10If only violation of responsiveness is due to conflicting schedules or bidding for alternate courses, simply

indicating preferences over courses and indicating the constraints is sufficient.
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Step t : Each student who is rejected from one or more courses in Step (t-1) proposes to courses

in his best schedule out of those courses which has not rejected him. By substitutability this will

include all courses for which he is on hold. Each course c considers the new proposals together

with the proposals on hold and rejects all but the highest bidding qc students. Those who are not

rejected are kept on hold. In case there is a tie, the tie-breaking lottery is used to determine who

is rejected and who will be kept on hold.

The procedure terminates when no proposal is rejected and at this stage course assignments are

finalized.

Lemma 1, Propositions 1, 2 and 3 immediately extend: Under substitutable preferences when

students behave as expected utility maximizers under a belief system, the best decision of each

student is revealing their preferences truthfully to the Gale-Shapley Pareto-dominant market mech-

anism; the outcome of Gale-Shapley Pareto-dominant market mechanism is a market outcome; it

Pareto dominates any other market outcome; and if the induced bid matrices are the same, the

UMBSmechanism cannot Pareto-dominate the Gale-Shapley Pareto-dominant market mechanism.

In Appendix A, we prove these results for this more general case with substitutable preferences.

What if preferences are not substitutable? For instance what happens if there are complemen-

tarities and a student wishes to take two courses together but does not wish to take either one

in case he cannot take the other? Recent literature on related models with indivisibilities such

as Gul and Stacchetti (1999), Milgrom (2000), and Kojima and Hatfield (2007) suggest that such

complementarities might be bad news. Our next result shows that the course-bidding approach

for individual courses collapses unless preferences are substitutable. More specifically we show

that a market equilibrium may not exist unless preferences are substitutable.11

Proposition 4 Let C be the set of courses and suppose there is a student i whose preferences Pi

over schedules is not substitutable. If the number of courses in C and the bid endowment B are

high enough, there exists a belief system F for market clearing prices, a set of students J with

responsive preferences and a utility profile U representing preferences such that there is no market

11Intuitively bidding for individual courses is not appropriate when preferences have complementarities and

instead one may consider course allocation mechanisms which rely on bidding for schedules (instead of courses).

University of Chicago Business School uses one such mechanism. Analysis of schedule-bidding mechanisms is very

important but it is beyond the scope of our paper.
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equilibrium for the problem (U, F ) .

6 Conclusion

Mechanisms that rely on course bidding are widely used at Business Schools and Law Schools

in order to allocate seats at oversubscribed courses. Bids play two important roles under these

mechanisms:

1. Bids are used to infer student preferences over schedules, and

2. bids are used to determine who has a bigger claim on each seat.

We have shown that these two roles may easily conflict and the preferences induced from bids

may significantly differ from the true preferences. Therefore, while these mechanisms are promoted

as market mechanisms, they are not truly market mechanisms. The two conflicting roles of the

bids may easily result in efficiency loss due to inadequately using bids as a proxy for the strength

of the preferences. We have shown that under a “true” market mechanism the two roles of the

bids shall be separated and students should state their preferences in addition to bidding over

courses. In this way, registrar’s offices no longer need to “guess” student preferences and they can

directly use the stated preferences. This will also give registrar’s offices a more reliable measure of

underdemanded courses and in case this measure is used in policy decisions, more solid decisions

can be given.12

One possible appeal of inferring preferences from bids is that there is a unique market outcome

of the induced economy. On the contrary, once students directly submit their preferences in

addition to allocating their bids, there may be several market outcomes. Fortunately there exists

a market outcome which Pareto dominates any other market outcome and therefore multiplicity

of market outcomes is not a serious drawback for our proposal. It is important to emphasize

that although relying on the Pareto-dominant market mechanism eliminates inefficiencies based

12For example, the following statement from the Bidding Instructions at Haas School of Business, UC Berkeley

shows that low bids may result in cancellation of courses:

Bidding serves three functions. First, it allows us to allocate seats fairly in oversubscribed classes.

Second, it allows us to identify and cancel courses with insufficient demand. Third, . . . .
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on “miscalculation” of student preferences, it does not eliminate all inefficiencies. There is a

potential conflict between Pareto efficiency and market equilibria in the context of course bidding

and even the Pareto-dominant market equilibria cannot escape from “market failure.” Furthermore

if student preferences do not satisfy a condition known as substitutability, then course bidding

loses much of its appeal, as a market equilibrium may cease to exist.

In theory, the reason of ex-post inefficiencies which cannot be eliminated by the Gale-Shapley

Pareto-dominant market mechanism is that under our market equilibrium definition, some bids

of the students are wasted, i.e. they spend too many points on a course which they could have

bought for cheaper. In order to eliminate such an efficiency loss, our future research agenda

involves investigation of dynamic matching mechanisms that clear in multiple rounds.
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A Appendix: Proofs of Results

Course Bidding and Two-Sided Matching Markets: We first relate course bidding with

two-sided matching markets in order to prove Propositions 1 and 2.

Let I be the set of students, C be the set of courses, qI be the maximum number of courses

each student can take, qC = (qc)c∈C be the list of course capacities, and b = [bic]i∈Ic∈C be a bid

matrix. Let PI = (Pi)i∈I be the list of student preferences over schedules and suppose preferences

are substitutable. We simply refer to each six-tuple (I, C, qI , qC , PI , b) as an ex-post problem.

Given an ex-post problem, construct a two-sided matching market as follows: In addition

to students who have preferences over schedules (i.e. sets of courses of size at most qI), pretend

as if each course c is also an agent who has strict preferences Pc over groups of students of size

at most qc. Furthermore suppose that preferences of courses are responsive and based on student

bids. That is, for each course c,

1. for any pair of students i, j, {i}Pc{j} if and only if bic > bjc,

2. for any student i, and any group of students J with |J | < qc, i 6∈ J ,

(J ∪ {i})PcJ,

3. for any pair of students i, j, and any group of students J with i, j 6∈ J as well as |J | < qc,

(J ∪ {i})Pc(J ∪ {j}) if and only if {i}Pc{j}.

Let PC = (Pc)c∈C be the list of course preferences. Given an ex-post problem (I, C, qI , qC , PI , b)

we refer to the six-tuple (I, C, qI , qC , PI , PC) as an induced two-sided matching market.

For a problem, the central concept is a market equilibrium. For a two-sided matching market

the central concept is pairwise stability: A matching μ is pairwise stable if there is no unmatched

student-course pair (i, c) such that

1. a. student i has an incomplete schedule and (μi ∪ {c})Piμi or

b. student i has a course d in his schedule such that [(μi \ {d}) ∪ {c}]Piμi

and

2. a. course c has an empty slot under μ or

b. course c has a student j in its class such that [(μc \ {j}) ∪ {i}]Pcμc.

The following well-known result is due to Blair (1988).
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Proposition 5 Suppose both students and courses have substitutable preferences over other side

of the market. Then

1. student-proposing deferred acceptance algorithm yields a pairwise stable matching, and

2. this pairwise stable matching is at least as good as any pairwise stable matching for any

student.

We next state the proof of Lemma 1 for substitutable preferences.

Proof of Lemma1: Let F be a belief system for market-clearing bids. For any student i, let bi

be a bid vector, Pi be the substitutable preferences of student i over schedules and P̃i 6= Pi be any

other preference relation. We will prove that for every utility function Ui that represents Pi, the

expected utility of revealing
³
bi, P̃i

´
cannot exceed the expected utility of revealing (bi, Pi) for the

Gale-Shapley Pareto-dominant market mechanism under price-taking behavior with respect to F.

Consider any realization of price vector p as a draw from the distribution function F . Consider

the instances under which the student reveals
³
bi, P̃i

´
and (bi, Pi). The student believes that he

will be placed in a course c if and only if bic ≥ pc as long as he makes an offer under the Gale-

Shapley Pareto-dominant market mechanism. Whenever a student is rejected by a course under

(bi, Pi), under the price-taking assumption, it means that the quota of the course will be full and

pc > bic. Therefore, the student will also be rejected by the same course c under
³
bi, P̃i

´
. Since

the mechanism’s algorithm allows the student make an offer to the best schedule of courses among

the ones that had not yet rejected the student in each round, the student believes that revealing

(bi, Pi) will bring at least as much utility as
³
bi, P̃i

´
, which includes his incorrect preferences.

Since the above observation is true for each draw of the price vector, this observation will also

hold under expected utility maximization under price-taking behavior. ♦

Proposition 5 together with Lemma 1 and the following lemma will be key to prove Propositions

1 and 2.

Lemma 2 Let (I, C, qI , qC , B, U, F ) be a course-bidding economy. Let bid matrix b satisfy con-

dition 1 of the market equilibrium for (I, C, qI , qC , B, U, F ), that is it is the market equilibrium

bid matrix. Let (I, C, qI , qC , PI , b) be the induced ex-post problem and (I, C, qI , qC , PI , PC) be any
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of its induced two-sided matching markets. A matching μ is a market outcome of the economy

(I, C, qI , qC , B, U, F ) if and only if it is a pairwise stable matching of the two-sided matching market

(I, C, qI , qC , PI , PC).

Proof of Lemma2: Let (μ, b, p) be a market equilibrium of the economy (I, C, qI , qC , B, U, F ) and

suppose μ is not pairwise stable for the induced two-sided matching market (I, C, qI , qC , PI , PC).

There are four possibilities.

Case 1 : There exists an unmatched student-course pair (i, c) such that

• student i has an incomplete schedule and (μi ∪ {c})Piμi, and

• course c has an empty slot.

Since c has an empty slot, pc = 0. But then whenever student affords schedule μi he can afford

schedule s = μi ∪ {c} as well and hence sPiμi for an affordable schedule s contradicting (μ, b, p) is

a market equilibrium.

Case 2 : There exists an unmatched student-course pair (i, c) such that

• student i has a course d in his schedule such that [(μi \ {d}) ∪ {c}]Piμi, and

• course c has an empty slot.

Since student i can afford schedule μi, he can afford schedule s = μi\{d} as well. Moreover since

c has an empty slot, pc = 0 and hence he can also afford schedule s0 = s∪ {c} = [(μi \ {d})∪ {c}].

Therefore s0Piμi for an affordable schedule s0 contradicting (μ, b, p) is a market equilibrium.

Case 3 : There exists an unmatched student-course pair (i, c) such that

• student i has an incomplete schedule and (μi ∪ {c})Piμi, and

• course c has a student j in its class such that [(μc \ {j}) ∪ {i}]Pcμc.

Since |μi| < qI , we have |(μi ∪ {c})| ≤ qI and therefore s = μi ∪ {c} is a schedule. Moreover

(μ, b, p) being a market equilibrium with c ∈ μj and [(μc \ {j}) ∪ {i}]Pcμc imply bic ≥ bjc ≥ pc

and therefore since student i can afford μi, he can afford s = μi ∪ {c} as well. Hence sPiμi for an

affordable schedule s contradicting (μ, b, p) is a market equilibrium.

Case 4 : There exists an unmatched student-course pair (i, c) such that

• student i has a course d in his schedule such that [(μi \ {d}) ∪ {c}]Piμi, and

• course c has a student j in its class such that [(μc \ {j}) ∪ {i}]Pcμc.
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Since (μ, p) is a market outcome with c ∈ μj, [(μc \ {j}) ∪ {i}]Pcμc implies bic ≥ bjc ≥ pc and

therefore student i can afford a seat at course c. Moreover since he can afford schedule μi, he

can afford schedule s = μi \ {d} as well. Therefore he can also afford schedule s0 = s ∪ {c} =

[(μi \ {d}) ∪ {c}] and hence s0Piμi for an affordable schedule s0 contradicting (μ, b, p) is a market

equilibrium.

These four cases exhaust all possibilities and hence μ shall be pairwise stable for the two-sided

matching market (I, C, qI , qC , PI , PC).

Conversely let μ be a pairwise stable matching for the two-sided matching market

(I, C, qI , qC , PI , PC). Construct the price vector p = (pc)c∈C as follows:

1. If c has a full class then pc = bic where student i is the least desirable student who is assigned

a seat at course c under μ.

2. If c has an empty slot then pc = 0.

We will show that (μ, b, p) is a market equilibrium of the problem (I, C, qI , qC , PI , b):

1. By construction, bic ≥ pc for any student i and any course c ∈ μi.

2. Again by construction, if |μc| < qc then pc = 0.

3. Finally suppose there exists a student i and a schedule s 6= μi that he could afford such that

sRiμi. Since preferences are strict, sPiμi and therefore there is a course c student i could afford

such that c ∈ s, c 6∈ μi, and either

• student i has an incomplete schedule μi with (μi ∪ {c})Piμi, or

• there is a course d ∈ μi such that [(μi \ {d}) ∪ {c}]Piμi.

Moreover since student i can afford a seat at course c either

• course c has an empty seat under μ or

• there exists a student j ∈ μc such that [(μc \ {j}) ∪ {i}]Pcμc.

Existence of the pair (i, c) contradicts pairwise stability of matching μ and therefore for any

schedule s 6= μi student i can afford, μiPis.

Hence (μ, b, p) is a market equilibrium. ♦

Proof of Proposition 1 and Proposition 2We prove the stronger versions of the propositions

for substitutable student preferences. Let I be the set of students, C be the set of courses, qI be the

maximum number of courses each student can take, qC = (qc)c∈C be the list of course capacities,
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b = [bic]i∈Ic∈C be the bid matrix and PI = (Pi)i∈I be the list of substitutable student preferences

represented by utility profile U . Let F be a belief system for the market clearing bids and B be the

bid endowment of students. By Lemma 1, every student i reveals Pi to the Gale-Shapley Pareto-

dominant market mechanism. Moreover, let b be a bid matrix obtained by each student maximizing

his expected utility under price-taking behavior with respect to F . Given that each student

reveals his preferences truthfully under the Gale-Shapley Pareto-dominant market mechanism,

maximizing expected utility is identical to maximizing UF
i

³
b̃i
´
with respect to b̃i. Therefore, b

is an equilibrium bid matrix. Let μGS be the outcome of Gale-Shapley Pareto-dominant market

mechanism under (P, b). Given the ex-post problem (I, C, qI , qC , PI , b), let (I, C, qI , qC , PI , PC)

be an induced two-sided matching market. By Proposition 6, μGS is a pairwise stable matching

for the two-sided matching market (I, C, qI , qC , PI , PC) and it is at least as good as any pairwise

stable matching for any student. Therefore by Lemma 2, μGS is a market outcome for the problem

(I, C, qI , qC , B, U, F ) and it Pareto dominates any other market outcome. ♦

Proof of Proposition 3: Let b be bid matrix and P be a list of substitutable student pref-

erences. Let μUMBS be the outcome of the UMBS mechanism for b and μGS be the out-

come of the Gale-Shapley Pareto-dominant mechanism for bid matrix b and preference pro-

file P . Suppose that on the contrary, μUMBS Pareto-dominates μGS under P . There exists

some student i1 with μUMBS (i1)Pi1μ
GS (i1). Hence, there exists some c1 ∈ μUMBS (i1) \μGS (i1)

such that c1 ∈ Chi1
¡
μUMBS (i1) ∪ μGS (i1)

¢
. There exists some i2 ∈ I\ {i1} such that c1 ∈

μGS (i2) \μUMBS (i2) and bi1c1 < bi2c1. The last part of the previous statement holds as other-

wise student i1 would have been enrolled in the preferred course c1 under μGS, which is a market

outcome. We have μUMBS (i2)Pi2μ
GS (i2) and there exists some c2 ∈ μUMBS (i2) \μGS (i2) such

that c2 ∈ Chi2
¡
μUMBS (i2) ∪ μGS (i2)

¢
and bi2c1 < bi2c2. That is, because c1 6∈ μUMBS (i2) while

c1 ∈ μUMBS (i1) despite the fact that bi1c1 < bi2c1, it should be the case that the bid of i2 for c1 was

not valid under the UMBS mechanism although course c1 had a seat when it was this bid’s turn.

Hence, there exists i3 ∈ I\ {i2} such that c2 ∈ μGS (i3) \μUMBS (i3) such that bi2c2 < bi3c2 . We

continue iteratively and this construction results with a sequence of courses
©
ck
ª
and a sequence

of students
©
ik
ª
such that bi1c1 < bi2c1 < bi2c2 < .... < bikck < bik+1ck < bik+1ck+1 < ...However,

this contradicts the fact that there are finitely many student-course pairs. Hence μUMBS cannot

Pareto-dominate μGS, completing the proof. ♦
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Proof of Proposition 4: Let C = {c1, ..., cm} be the set of courses, qC = (qc1 , qc2, ..., qcm) be

the vector of course capacities and qI be the maximum number of courses each student can take.

Suppose there is a student i whose preferences are not substitutable. Relabel the students so that

i1 is this student. Since Pi1 is not substitutable, for some C
0 ⊆ C there are two distinct courses

— without loss of generality — c1, c2 ∈ Chi1 (C
0) such that c2 /∈ Chi1(C

0\{c1}). We will construct

a set of students J , a bid vector b and a list of responsive preferences PJ = (Pi)i∈J such that the

resulting economy has no market equilibrium.

Let I = J ∪ {i1} denote the set of all students. For each course c ∈ C, and bid matrix b define

J(c, b) = {i ∈ I\ {i1, i2} : bic > max {bi1c, bi2c}} and

K(c, b) = {i ∈ I\ {i1, i2} : c ∈ Chi(C)} .

That is, J(c, b) is the set of students each of whom bids more than students i1, i2 for course c,

and K(c, b) is the set of students other than i1, i2 each of whom has course c in his best schedule.

Also define

C∗ = Chi1(C
0) ∪ Chi1(C 0\{c1}).

Note that

c1, c2 ∈ C∗ and Chi1 (C
∗) = Chi1 (C

0) .

Let C 00 be the set of courses such that

s Pi1 ∅ =⇒ s ⊆ C 00.

Relabel courses so that

C 00 ∩ {c3, c4, ..., cqI+1} = ∅.

This can be done, provided that the number of courses is high enough. Construct the set of

students J , the list of responsive preferences PJ = (Pi)i∈J , the utility profile U = (Ui)i∈J∪{i1}

representing P , and the belief system F , as

1. PJ = (Pi)i∈J and U = (Ui)i∈J∪{i1} satisfy the following:

a. For student i1, any desirable schedule s which is at least as good as Chi1 (C∗) brings a utility

of u− ε1,s and any desirable schedule s worse than Chi1 (C
∗) brings a utility of u

2
− ε1,s such that

u > 0 and all ε1,s are positive and arbitrarily close to 0. Remaining unmatched brings utility 0

and any undesirable schedule brings a negative utility.
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b. For student i2, courses c1, c2, ..., cqI+1 are the only desirable courses with

{c2}Pi2 {c3}Pi2 {c4}Pi2 ...Pi2 {cqI+1}Pi2 {c1} , and

such that Pi2 is a responsive preference relation over schedules with quota qI . His utility schedule

over the schedules is such that any schedule s with qI desirable courses brings student i2 utility

u− ε2,s, and any schedule s with less than qI desirable courses and no undesirable courses brings
u
2
−ε2,s utility such that all ε2,s values are positive and arbitrarily close to 0. Remaining unmatched

brings utility 0 and any other schedule brings a negative utility.

c. There are sufficiently many students in I\ {i1, i2} such that each of such students desire a

single course in C and find any other course undesirable with the conditions that (1) the number

of students in I\ {i1, i2} that desire a course c ∈ C∗ ∪ {c1, c2, c3, ..., cqI+1} is qc − 1 and (2) the

number of students in I\ {i1, i2} that desire a course c 6∈ C∗ ∪ {c1, c2, c3, ..., cqI+1} is qc. The

utility of these students from their desirable course is arbitrary but higher than the option value

of remaining unmatched which is in turn larger than the utility of any other course.

2. F is such that beliefs are independent for each course and satisfy for some ε positive but

arbitrarily small:

a. For course c1, any bid between 1 and 2B
3
succeeds with probability 0.5, any higher bid less

than B succeeds with probability 1− ε, and bid B succeeds with probability 1.

b. For course c2, any bid between 1 and B
2
succeeds with probability 0.1, any higher bid less

than B succeeds with probability 0.5 and bid B succeeds with probability 1.

c. For any course c ∈
©
c3, ...., cqI+1

ª
∪C∗, any bid between 1 and B−1 succeeds with probability

1− ε, and bid B succeeds with probability 1.

d. For any course c 6∈ {c1, c2, c3, ..., cqI+1} ∪ C∗, any bid between 1 and B − 1 succeeds with

probability ε, and bid B succeeds with probability 0.1, where ε is given above.

We next prove the following claim:

Claim 1: Given that B is sufficiently large and ε is sufficiently small, for any equilibrium bid

matrix b of the economy (U, F ), we have

1. bi2c < bi1c < B for all c ∈ C∗\ {c1},

2. bi1c < bi2c < B for all c ∈ {c1, c3, c4, ..., cqI+1},

3. for all i ∈ I\ {i1, i2}, bic ∈ {0, B} for all c ∈ C.
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4. J(c, b) = K(c, b) for all c ∈ C,

5. |J(c, b)| = |K(c, b)| = qc − 1 for all c ∈ {c1, c2, c3, ..., cqI+1} ∪ C∗, and

6. |J(c, b)| = |K(c, b)| = qc for all c /∈ {c1, c2, c3, ..., cqI+1} ∪ C∗.

Proof of Claim 1 : We prove the claim by deriving the equilibrium bid matrix for the students:

• Consider any student i ∈ I\ {i1, i2}. Given that he only finds some course c ∈

{c1, c2, c3, ..., cqI+1} ∪ C∗ desirable and that he believes that his bid will clear with the highest

possible probability, if and only if he bids B points, his optimal bid vector satisfies bic = B and

bic0 = 0 for all c0 6= c.

• Consider student i1. We consider three cases for his bidding behavior:

− If he bids more than 2B
3
for c1, 1 for each remaining course in C 00 (in particular less than B

2
+1

for course c2): First note that this can be feasible for sufficiently large B. Observe that he will

clear course c2 with probability 0.1 and clear c1 with probability 1, and clear all other courses in

C∗ almost surely, while he will not clear any other course almost surely. Thus whenever he clears

c2, which happens with 0.1 probability, he will almost surely clear Chi1 (C
∗) as his best schedule

and otherwise almost surely he will receive a less desirable schedule. Thus, his expected utility in

this case will be U∗ = 0.1u+ 0.9u
2
+ o∗ (ε, {ε1,s}) .

− If he bids more than B
2
for course c2, 1 for each remaining course in C 00 (in particular less

than 2B
3
+ 1 for course c1): Observe that he will clear course c2 with probability 0.5 and clear c1

with probability 0.5, and clear all other courses in C∗ almost surely while he will not clear any

other course almost surely. Thus, whenever he clears both c1 and c2, which happens with 0.25

probability, he will almost surely clear Chi1 (C
∗) as his best schedule and otherwise he will receive

a less desirable schedule. Thus, his expected utility will be U∗∗ = 0.25u+ 0.75u
2
+ o∗∗ (ε, {ε1,s}) .

− Observe that whenever he bids B for a course in C 00\C∗ he can only clear it with probability

0.1, and his maximum payoff will be U∗∗∗ = 0.1u+ o∗∗∗ (ε, {ε1,s})

For sufficiently small but positive ε and {ε1,s} values, o∗ (ε, {ε1,s}), o∗∗ (ε, {ε1,s}) , o∗∗∗ (ε, {ε1,s})

will be sufficiently close to 0, implying U∗∗ > U∗ > U∗∗∗. Note that he will bid at least 1 point

for each course in C∗.

• Consider student i2. We consider two cases for his bidding behavior:

− If he bids more than 2B
3
for c1, 1 for each course in {c2, ..., cqI+1} (in particular less than

B
2
+ 1 for course c2): Observe that he will clear course c2 with probability 0.1 and clear all
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other courses in {c1, c3, ..., cqI+1} with probability 1. Thus, since his preferences are responsive,

he will clear a schedule with qI desirable courses. Thus, his expected utility in this case will be

U∗ = u+ o∗ (ε, {ε2,s}) .

− If he bids more than B
2
for course c2, 1 for each course in {c1, c3, ..., cqI+1} (in particular

less than 2B
3
+ 1 for course c1): Observe that he will clear course c2 with probability 0.5 and

clear c1 with probability 0.5, and clear all other courses in {c2, ..., cqI+1}. Thus, whenever he

cannot clear both c1 and c2, which happens with 0.25 probability, he will have to get a schedule

of qI − 1 desirable courses with a utility close to u
2
, and otherwise he will receive a schedule

with qI desirable courses with a utility close to u. Thus, his expected utility can be expressed as

U∗∗ = 0.75u+ 0.25u
2
+ o∗∗ (ε, {ε2,s}) .

For sufficiently small but positive ε and {ε2,s} values, o∗ (ε, {ε2,s}) and o∗∗ (ε, {ε2,s}) will be

sufficiently close to 0, implying U∗ > U∗∗.

Hence,

0 < bi1c1 ≤
B

2
<
2B

3
< bi2c1 < B and 0 < bi2c2 ≤

B

3
<

B

2
< bi1c2 < B.

Since C∗ ⊆ C 00 and C 00∩{c3, ..., cqI+1} = ∅, for all c ∈ {c3, ..., cqI+1} , bi1c = 0 < bi2c < B. Moreover,

for all c ∈ C∗\ {c1, c2}, bi2c = 0 < bi1c < B. We also have for all i ∈ I\ {i1, i2}, bic ∈ {0, B} for all

c ∈ C.

Since neither i1 nor i2 will bid B for any course c ∈ C∗ ∪ {c1, c2, c3, ..., cqI+1} while there

are qc − 1 students bidding B for c and preferring {c} as his most desirable schedule, we have

J (c, b) = K (c, b) and |J (c, b)| = |K (c, b)| = qc − 1.

Since neither i1 nor i2 will bid B for any course c 6∈ C∗ ∪ {c1, c2, c3, ..., cqI+1} while there are

qc students bidding B for c and preferring {c} as his most desirable schedule, we have J (c, b) =

K (c, b) and |J (c, b)| = |K (c, b)| = qc. ♠

We will show that there is no market equilibrium of the resulting economy (U, F ). On the

contrary, suppose (μ, b, p) is a market equilibrium such that b satisfies the conditions in Claim 1.

Claim 2: For all c ∈ {c1, c2, c3, ..., cqI+1} ∪ C∗ and for all i ∈ J(c, b), we have c ∈ μi.

Proof of Claim 2 : Suppose that there is a student i ∈ J(c, b) such that c ∈ {c1, c2, c3, ..., cqI+1}∪C∗

and yet c 6∈ μi. By Condition (4) of Claim 1, i ∈ K(c, b). By Condition (3) of Claim 1 and the

assumption that i ∈ J(c, b), pc ≤ bic = B. By the construction of i’s preferences, {c} = Chi(C).
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Moreover student i can afford the schedule {c} and therefore {c}Piμi contradicting (μ, b, p) is a

market equilibrium. ♠

Claim 3: {c3, c4, . . . , cqI+1} ⊆ μi2 .

Proof of Claim 3 : Suppose that there is a course c ∈ {c3, c4, ..., cqI+1} such that c 6∈ μi2. By

responsiveness, c ∈ Chi2(μi2 ∪ {c}). Therefore since (μ, b, p) is a market equilibrium, pc > bi2c.

But then the definition of J(c, b) together with Conditions (2) and (5) of Claim 1 imply only

qc−2 students can afford a seat at course c and therefore course c has an empty seat contradicting

pc > bi2c. ♠

Claim 4: μi1 ⊆ C∗.

Proof of Claim 4 : Suppose that there is a course c ∈ μi1 such that c ∈ (C\C∗) . There are two

possible cases:

Case 1. c ∈ {c3, c4, ..., cqI+1}: By assumption, c ∈ μi1 and by Claim 3, c ∈ μi2 . By Conditions

(4) and (5) of Claim 1, there is a student j ∈ J(c, b) = K(c, b) such that c /∈ μj.

Case 2. c /∈ {c3, c4, ..., cqI+1}: By Condition (4) and Condition (6) of Claim 1, there is a

student j ∈ J(c) = K(c) such that c /∈ μj.

In either case, (μ, b, p) being a market equilibrium together with j ∈ J(c, b) implies bjc > bi1c ≥

pc, and this together with j ∈ K(c, b) and construction of Pj implies {c} = Chj(C) contradicting

(μ, b, p) is a market equilibrium. ♠

We now have the machinery to execute the final part of the proof. Since only courses

c1, c2, c3, . . . , cqI+1 are desirable for student i2, Claim 3 leaves us with three possibilities: μi2 =©
c3, c4, ..., cq

I+1

ª
, or μi2 =

©
c1, c3, c4, ..., cq

I+1

ª
, or μi2 =

©
c2, c3, c4, ..., cq

I+1

ª
. We will show that

none of the three can be the case at a market equilibrium.

Case 1. μi2 =
©
c3, c4, ..., cq

I+1

ª
: Since (μ, b, p) is a market equilibrium and since

(μi2 ∪ {c1})Pi2μi2 by responsiveness, we have pc1 > bi2c1. However by Conditions (2), (3), and (5)

of Claim 1, there are only qc1 − 1 students whose bids for course c1 are higher than the bid of

student i2. Therefore course c1 has an empty seat under μ contradicting pc1 > bi2c1.

Case 2. μi2 =
©
c1, c3, c4, ..., cq

I+1

ª
: By assumption, c1 ∈ μi2 and by Claim 2, each one of the

qc1 − 1 students in J(c1, b) is assigned a seat at course c1; therefore

c1 6∈ μi1.
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By Conditions (1), (3), and (5) of Claim 1, there are exactly qc2 students, including student i1,

whose bids for course c2 are higher than the bid of student i2. Therefore, since [(μi2 \ {c1}) ∪

{c2}]Pi2μi2 by responsiveness, each one of these students should be assigned a seat at course c2

for otherwise pc2 = 0 and student i2 affords the better schedule [(μi2 \ {c1}) ∪ {c2}]. Hence

c2 ∈ μi1.

By Conditions (1) and (5) of Claim 1, exactly qc − 1 students bid more than student i1 for each

course c ∈ Chi1(C
0 \ {c1}) ⊆ C∗ \ {c1} and since (μ, b, p) is a market equilibrium, student i1 can

afford the schedule Chi1(C
0 \ {c1}). Moreover by Claim 4, μi1 ⊆ C∗ ⊆ C 0 and we have already

shown that c1 6∈ μi1 . Therefore μi1 = Chi1(C
0\{c1}). However the preferences of student i1 are not

substitutable and in particular c2 6∈ Chi1(C
0 \ {c1}) and therefore c2 6∈ μi1 directly contradicting

c2 ∈ μi1.

Case 3. μi2 =
©
c2, c3, c4, ..., cq

I+1

ª
: By assumption, c2 ∈ μi2 and by Claim 2, each one of the

qc2 − 1 students in J(c2, b) is assigned a seat at course c2; therefore c2 6∈ μi1. Since c2 ∈ Chi1(C
0),

μi1 6= Chi1(C
0).

Consider course c1. While bi2c1 > bi1c1, by assumption c1 6∈ μi2 and by Conditions (4) and (5) of

Claim 1, exactly qc1 − 1 other students bid higher than student i1 for course c1. Therefore, since

(μ, b, p) is a market equilibrium, student i1 can afford a seat at course c1. Next consider any course

c ∈ C∗ \ {c1}. By Conditions (1) and (5) of Claim 1, qc − 1 students bid higher than student i1
for each such course c. Therefore student i1 can afford each course in C∗. Moreover by Claim

3, μi1 ⊆ C∗ and therefore μi1 = Chi1(C
∗) = Chi1(C

0) directly contradicting μi1 6= Chi1(C
0) and

completing the proof. ♦
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[2] Abdulkadiroğlu, A., P. Pathak, A. E. Roth, A., and T. Sönmez, "The Boston public school

match,"American Economic Review Papers and Proceedings 95:2(2005), 368-371.
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