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We analyze mechanisms that are used to allocate dormitory rooms to students at college
campuses. Students consist of newcoming freshmen, who do not currently occupy any
rooms, and more senior students each of whom occupies a room from the previous year. In
addition to the rooms already occupied by the existing tenants, there are vacated rooms by
the graduating class. Students have strict preferences over dormitory rooms. Each student
shall be assigned a dormitory room in an environment where monetary transfers are not
allowed. An existing tenant can move to another room as a result of the assignment. We
show that you request my house–I get your turn mechanisms are the only mechanisms that
are Pareto-efficient, individually rational, strategy-proof, weakly neutral, and consistent.

© 2009 Published by Elsevier Inc.

1. Introduction

Abdulkadiroğlu and Sönmez (1999) introduce house allocation problems with existing tenants: A set of houses should be
allocated to a set of agents by a centralized clearinghouse. Some of the agents are existing tenants each of whom already
occupies a house and the rest of the agents are newcomers. In addition to occupied houses, there are vacant houses. Existing
tenants are not only entitled to keep their current houses but also apply for other houses.

This model is motivated by the real-life practices of on-campus housing at universities: The freshmen are the “newcom-
ers”, while the sophomores, juniors, and seniors are the “existing tenants”. The rooms vacated by the graduating class are
the “vacant” rooms, and the rooms already occupied in the previous year by the existing tenants are the “occupied” rooms.

An allocation is a matching of agents and houses so that each agent is assigned at most one house and no house is
assigned to more than one agent. A mechanism is a systematic procedure that selects a matching for each problem.

Abdulkadiroğlu and Sönmez (1999) introduce the following mechanism which is referred to as the You Request My House–
I Get Your Turn (YRMH-IGYT): Agents are prioritized in a queue and they are assigned their top choice house among still

✩ We would like to thank Fuhito Kojima, Marek Pycia, William Thomson, and participants at U. of British Columbia, Tilburg U., Waseda U., Tokyo U., Tokyo
Tech U., NASMES’06 at U. of Minnesota, SWET’06 at Koç U., SCW’06 in Istanbul, CED’06 in Bodrum, Penn State U., and Texas A&M U. for comments. This
version of the paper benefited extensively from the comments of an associate editor and an anonymous referee of the journal. We would like to thank NSF
for support of our research. This paper supersedes the working paper entitled “Kidney Exchange with Good Samaritan Donors: A Characterization” (Sönmez
and Ünver, 2006). All errors are our own responsibility.

* Corresponding author.
E-mail addresses: sonmezt@bc.edu (T. Sönmez), unver@bc.edu (M.U. Ünver).
URLs: http://www2.bc.edu/~sonmezt (T. Sönmez), http://www2.bc.edu/~unver (M.U. Ünver).
0899-8256/$ – see front matter © 2009 Published by Elsevier Inc.
doi:10.1016/j.geb.2009.10.010

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geb
mailto:sonmezt@bc.edu
mailto:unver@bc.edu
http://www2.bc.edu/~sonmezt
http://www2.bc.edu/~unver
http://dx.doi.org/10.1016/j.geb.2009.10.010


426 T. Sönmez, M.U. Ünver / Games and Economic Behavior 69 (2010) 425–445
unassigned houses in priority order. This continues until an agent “requests” the occupied house of an existing tenant
who has not been assigned a house yet. In this case this request is put on hold; the existing tenant whose occupied
house is requested is moved to the top of the queue, directly in front of the requester and the process continues with
the modified queue. This is repeated any time there is a request for the occupied house of an existing tenant whose
assignment is yet to be finalized. If a cycle of requests is formed, each existing tenant in the cycle is assigned the house she
requested and removed from the system together with their assignments. Each priority order induces a different YRMH-IGYT
mechanism.

Abdulkadiroğlu and Sönmez (1999) show that the YRMH-IGYT mechanisms are Pareto-efficient, individually rational (in
the sense that each existing tenant is guaranteed a house that is no worse than her occupied house and each newcomer is
guaranteed a house that is no worse than remaining unmatched option), and strategy-proof. In this paper, we present a full
characterization of the YRMH-IGYT mechanisms based on these three axioms together with weak neutrality and consistency.
Weak neutrality requires the outcome of a mechanism to be independent of the names or labels of the vacant houses. The
formulation of consistency is less obvious in the present context. The traditional consistency axiom compares any pair of
economies where one economy is obtained from the other by removal of a group of agents together with their assignments
under the mechanism for which consistency is tested, and it requires this mechanism to insist on the same assignment as
in the original economy for each remaining agent.1 If a mechanism is consistent, then it eliminates incentives to renegotiate
upon departure of any group of agents with their assignments. The difficulty, however, is that upon the removal of a group
of agents with their assignments, what remains may not always be a well-defined economy. For example, if two existing
tenants are assigned each others’ occupied houses and if one of them leaves with her assignment, in what remains an
existing tenant does not have her occupied house. A natural formulation here would be requiring consistency whenever the
reduced economy is well-defined, but as it turns out this version is not strong enough for the full characterization of the
YRMH-IGYT mechanisms.2 For full characterization we also need a mechanism to insist on its outcome if a set of unassigned
houses are removed (provided that what remains is a well-defined economy). The consistency axiom we present in the paper
is the following: When a group of agents are removed from a problem together with their assignments under a mechanism
φ and possibly together with some unassigned houses under φ, what remains may not be a well-defined problem. But if it
is, then the assignments of the remaining agents under mechanism φ should not be affected by this departure. So if some
of the exchanges are finalized while the others are pending, and even if some unassigned vacant houses become suddenly
unavailable, the remaining agents should still have no reason to request another run of the mechanism.

House allocation with existing tenants model has another real-life application referred to as kidney exchange, which is
recently brought to the attention of economists by Roth et al. (2004), Sönmez and Ünver (2006). In this problem, there
are patients (similar to the “existing tenants”) who would like to receive a compatible kidney, and their paired-donors
(similar to the “occupied houses”) whom they can trade in exchange of a better kidney donor. There are also options similar
to the “vacant houses,” such as altruistic donors who are not attached to any patient (see Sönmez and Ünver, 2006), or
priority in the deceased donor waiting list (see Roth et al., 2004). On the other hand, there are no patients without attached
paired-donors (similar to the “newcomers”) in the way these papers formulate the problem.

Housing markets (Shapley and Scarf, 1974) and house allocation problems (Hylland and Zeckhauser, 1979) are two special
cases of our model. Housing markets do not involve any vacant houses and newcomers. House allocation problems do
not involve any existing tenants and occupied houses. YRMH-IGYT mechanism is a generalization of both core mechanism
for housing markets and the simple serial dictatorship for house allocation. When preferences are strict, there is a unique
core outcome of a housing market (Roth and Postlewaite, 1977) which can be determined through Gale’s top trading cycles
algorithm (attributed to David Gale by Shapley and Scarf, 1974). Moreover, in this case it is also strategy-proof (Roth, 1982).
Indeed it is the only mechanism that is Pareto-efficient, individually rational, and strategy-proof (Ma, 1994). In the context
of housing markets, Svensson (1999) shows that the simple serial dictatorship is the only mechanism that is strategy-proof,
nonbossy, and neutral while Ergin (2000) shows it is the only mechanism that is Pareto-efficient, consistent, and neutral. Our
characterization is a natural generalization of each of Ma (1994), Svensson (1999), and Ergin (2000) results.3

In two related papers, Pápai (2000) characterizes group strategy-proof, Pareto-efficient, and reallocation-proof mechanisms,
and Pycia and Ünver (2007) characterize group strategy-proof and Pareto-efficient mechanisms in house allocation economies.
Although these economies do not have any individual endowments (unlike in a house allocation problem with existing
tenants), the characterized mechanisms by these papers, called Hierarchical Exchange mechanisms and Trading Cycles with
Brokers and Owners, respectively, mimic trading procedures with individual endowments, which are induced according to an
inheritance structure. Though YRMH-IGYT mechanisms are in the class of hierarchical exchange mechanisms and also in the
class of trading cycles with brokers and owners mechanisms, in general, these two latter classes fail to satisfy individual
rationality, weak neutrality, and consistency.

1 See Thomson (1996) for a comprehensive survey.
2 The mechanism in Example 7 satisfies all four other axioms and this version of consistency but not the stronger version we present in the paper.
3 Other axiomatic studies in housing markets and house allocation include Chambers (2004), Ehlers (2002), Ehlers and Klaus (2007), Ehlers et al. (2002),

Kesten (2009), Miyagawa (2002), Pápai (2007), Velez-Cordona (2006).
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2. House allocation problem with existing tenants

Let I be a finite set of agents and H be a finite set of houses. We refer to I as the potential set of agents and H
as the potential set of houses. Set I is partitioned as {I E , IN }. Set IE is referred to as the potential existing tenant
set and IN is referred to as the potential newcomer set. Each agent i ∈ I E has a paired house hi ∈ H. We refer to hi
as the occupied house of potential existing tenant i. No two potential existing tenants have the same occupied house,
that is hi = h j �⇒ i = j for any i, j ∈ IE . We assume that |H| > |IE |, that is, there exists at least one house that is
not occupied by a potential existing tenant. Each i ∈ I E has strict preferences Pi on all houses in H and the remaining
unmatched option denoted by h0 such that hi P ih0, that is, each potential existing tenant prefers her occupied house over
the remaining unmatched option h0. Each potential newcomer i ∈ I N has strict preferences over H and the remaining
unmatched option h0. For each agent, let Ri denote the weak preference relation induced by Pi . For any agent i ∈ I and
any subset of houses H ⊆ H, let R(i, H) denote the set of all strict preferences over H ∪ {h0} such that if i ∈ IE and
hi ∈ H then hi P ih0. Let R(I, H) denote the set of all feasible strict preference profiles over H ∪ {h0} for agents in I , that is

R(I, H) = ∏
i∈I R(i, H).

A house allocation problem with existing tenants, or simply a problem, is a list 〈I, H, R〉 where:

• I ⊆ I is a set of agents,
• H ⊆ H is a set of houses such that for all i ∈ I E ∩ I , hi ∈ H , and
• R = (Ri)i∈I ∈ R(I, H) is a preference profile.

Given a problem 〈I, H, R〉, we partition I as {I E , IN} and H as {H O , H V }. Set I E = IE ∩ I is the set of existing tenants.
Set H O = {hi}i∈I E is the set of houses occupied by the existing tenants, and we refer to it as the set of occupied houses. Set
IN = I \ I E = IN ∩ I is the set of newcomers. Set H V = H \ H O is the set of vacant houses. Note that the occupied house
h j of a potential existing tenant j ∈ I E is formally a vacant house in a problem 〈I, H, R〉 if j /∈ I and h j ∈ H .4

Since the information on existing tenants, newcomers, occupied houses, and vacant houses is embedded in a preference
profile, whenever convenient, we will denote a problem with simply a preference profile.

Given I ⊆ I and H ⊆ H, a matching is a mapping μ : I → H ∪ {h0} such that

μ(i) �= μ( j) or μ(i) = μ( j) = h0 for any distinct i, j ∈ I.

We refer to μ(i) as the assignment of agent i. A matching is simply an assignment of houses to agents such that each
agent is assigned a distinct house from the rest of the agents or unmatched. Let M(I, H) denote the set of matchings for
given I , H .

A mechanism is a systematic procedure that assigns a matching for each problem R . The outcome of mechanism φ for
problem R is denoted by φ[R] and the assignment of agent i under φ for problem R is denoted by φ[R](i). For any J ⊆ I ,
let φ[R]( J ) = {φ[R]( j)} j∈ J be the set of houses assigned to agents in J .

3. The axioms

3.1. Individual rationality, Pareto efficiency, and strategy-proofness

Throughout this section, we fix the set of agents I ⊆ I and the set of houses H ⊆ H as defined above.
A matching is individually rational if no existing tenant is assigned a house worse than her occupied house and no

newcomer is assigned a house worse than remaining unmatched. Formally, a matching μ ∈ M is individually rational, if
μ(i)Rihi for any i ∈ I E and μ(i)Rih0 for any i ∈ IN . A mechanism is individually rational if it always selects an individually
rational matching.

A matching is Pareto-efficient if there is no other matching that makes every agent weakly better off and some agent
strictly better off. Formally, a matching μ ∈ M is Pareto-efficient if there is no matching ν ∈ M such that ν(i)Riμ(i) for all
i ∈ I and ν( j)P jμ( j) for some j ∈ I . A mechanism is Pareto-efficient if it always selects a Pareto-efficient matching.

A mechanism is strategy-proof if no agent can ever benefit by misrepresenting her preferences. Formally a mechanism
φ is strategy-proof if for any problem R ∈ R(I, H), any agent i ∈ I, and any potential misrepresentation R∗

i ∈ R(i, H), we
have φ[Ri, R−i](i)Riφ[R∗

i , R−i](i).

3.2. Weak neutrality and consistency

Each of the three axioms we introduced so far is defined for fixed sets of agents and houses. In contrast, our next axiom
weak neutrality relates problems with possibly different sets of houses and final axiom consistency relates problems with
different sets of agents and houses.

4 This observation will be useful when we formalize the consistency axiom later on. We will be considering such situations as existing tenant j being
assigned a vacant house and leaving the problem. The occupied house h j of existing tenant j is no longer attached to any agent in the reduced problem,
and hence treated as a vacant house.
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A mechanism is weakly neutral if labeling of vacant houses has no effect on the outcome of the mechanism. We need
additional notation to define weak neutrality formally. For any I E ⊆ IE , a permutation of vacant houses for I E is a one-to-
one and onto function π : H ∪ {h0} → H ∪ {h0} such that π(hi) = hi for any i ∈ I E and π(h0) = h0. For any h ∈ H ∪ {h0}, we
refer to π(h) as the label of h under π . Observe that only vacant houses are relabeled under π . For any problem 〈I, H, R〉,
any permutation π of vacant houses for I E , and any i ∈ I , let Rπ

i ∈ R(i, {π(h)}h∈H ) be such that

g Rπ
i h ⇐⇒ π−1(g)Riπ

−1(h) for any g,h ∈ {
π(e)

}
e∈H∪{h0}.

Let Rπ = (Rπ
i )i∈I . Formally, a mechanism φ is weakly neutral if for any problem 〈I, H, R〉 and any permutation π of vacant

houses for I E , we have

φ
[

Rπ
]
(i) = π

(
φ[R](i)

)
for any i ∈ I.

We need additional notation to introduce our final axiom.
For any agent i ∈ I , preference relation Ri ∈ R(i, H), and set of houses G ⊂ H , let RG

i ∈ R(i, G) be the restriction of
preference Ri to houses in G . That is,

g RG
i h ⇐⇒ g Rih for any g,h ∈ G ∪ {h0}.

For any J ⊂ I , let R J = (Ri)i∈ J be the restriction of profile R to agents in J . Given fixed I ⊆ I and H ⊆ H and R ∈ R(I, H),
we will often denote R I\ J by R− J . For any J ⊂ I and G ⊂ H , let RG

J = (RG
i )i∈ J be the restriction of profile R to agents in J

and houses in G . Given fixed H ⊆ H, Ri ∈ R(i, H), we will often denote R H\G
i by R−G

i .
Given a problem 〈I, H, R〉, sets of agents J ⊂ I , and sets of houses G ⊂ H we refer to 〈 J , G, RG

J 〉 as the restriction of

problem 〈I, H, R〉 to agents in J and houses in G . The triple 〈 J , G, RG
J 〉 itself is a well-defined reduced problem if G O =

{h j} j∈ J E , that is, the occupied houses of existing tenants in J is the set of occupied houses in G .
Given a problem 〈I, H, R〉, the removal of a set of agents J ⊂ I together with their assignments φ[R]( J ) and some

unassigned houses G ⊂ H under φ results in a well-defined reduced problem 〈I \ J , H \ (φ[R]( J ) ∪ G), R−φ[R]( J)∪G
− J 〉 if

(φ[R]( J ) ∪ G) ∩ {hi}i∈I E \ J = ∅.
A mechanism φ is consistent if for any problem 〈I, H, R〉, whenever the removal of a set of agents J ⊂ I together with

their assignments φ[R]( J ) and some unassigned houses G ⊂ H results in a well-defined reduced problem, then

φ
[

R−φ[R]( J )∪G
− J

]
(i) = φ[R](i) for any i ∈ I \ J .

So under a consistent mechanism, the removal of

• a set of agents,
• their assignments, and
• a set of unassigned houses

does not affect the assignments of remaining agents provided that the removal results in a well-defined reduced prob-
lem.5

4. You Request My House–I Get Your Turn mechanism

You Request My House–I Get Your Turn mechanism (or YRMH-IGYT mechanism in short) is introduced by Abdulkadiroğlu
and Sönmez (1999) and further studied by Chen and Sönmez (2002) and Sönmez and Ünver (2006).6 In order to define this
mechanism we need the following additional notation:

A (priority) ordering is a one-to-one and onto function f : {1,2, . . . , |I|} → I . Here f (1) indicates the agent with the
highest priority in I , f (2) indicates the agent with the second highest priority in I , and so on. Let F be the set of all
orderings. Given a set of agents J ⊆ I , agent j ∈ J is the highest priority agent in J under f if f −1( j) � f −1(i) for any
i ∈ J . Given a set of agents J ⊆ I , the restriction of f to J is an ordering f J of the agents in J which orders them as they
are ordered in f . Formally f J : {1,2, . . . , | J |} → J is a one-to-one and onto function such that for any i, j ∈ J ,

f −1
J (i) � f −1

J ( j) ⇐⇒ f −1(i) � f −1( j).

Each ordering f ∈ F defines a YRMH-IGYT mechanism. Let ψ f denote the YRMH-IGYT mechanism induced by ordering
f ∈ F . For any problem 〈I, H, R〉, let ψ f [R] denote the outcome of the YRMH-IGYT mechanism induced by ordering f I for
this problem.

For any problem 〈I, H, R〉, matching ψ f [R] is obtained with the following YRMH-IGYT algorithm in several rounds.

5 Consistency for house allocation problem with existing tenants is in the same spirit as consistency defined for exchange economies by Thomson (1992)
and Dagan (1995). Thomson defines consistency in generalized economies with social and private endowments. Dagan considers Walrasian economies, but
allows the solutions to be empty-valued.

6 Abdulkadiroğlu and Sönmez (1999) provided two algorithms, You Request My House–I Get Your Turn (YRMH-IGYT) algorithm and the Top Trading Cycles
(TTC) algorithm, to implement this mechanism. The description we provide below is based on the description that utilizes the TTC algorithm.
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Round 1. Construct a graph in which each agent, each house, and remaining unmatched option h0 is a node. In this graph:

• each agent “points to” her top choice, a house or option h0 (i.e. there is a directed link from each agent to her top
choice),

• each occupied house hi ∈ H O points to its tenant i,
• each vacant house points to the highest priority agent in I under f , and
• option h0 points to all newcomers.

Since there is a finite number of agents and houses, there is at least one cycle. No agent or house is in more than one
cycle, however remaining unmatched option can be in more than one cycle. (A cycle is either (i) a list (g1, j1, . . . , gk, jk) of
houses and agents where house g1 points to agent j1, agent j1 points to house g2, house g2 points to agent j2, . . . , house
gk points to agent jk , and agent jk points to house g1, or (ii) a list (h0, i) where option h0 points to agent i and agent i
points to h0.) Assign each agent in each cycle the choice she points to and remove each such cycle from the graph.

In general, at

Round t. Construct a new graph with the remaining agents, houses, and the remaining unmatched option h0 such that

• each remaining agent points to her first choice among the remaining houses and option h0,
• each remaining occupied house hi ∈ H O points to its tenant i in case its tenant i remains in the problem, and to the

highest priority remaining agent under f otherwise,
• each remaining vacant house points to the highest priority remaining agent under f , and
• option h0 points to all remaining newcomers.

There is at least one cycle. No agent and house is in more than one cycle, though option h0 can be in more than one
cycle. Carry out the implied exchange in each cycle.

The algorithm terminates when there is no agent left in the graph.
We demonstrate the execution of the algorithm with an example:

Example 1. Let I E = {i1, i2, i3, i4}, IN = {i5, i6, i7}, H O = {h1,h2,h3,h4}, H V = {d, e, g}. Let f = (i5, i1, i3, i7, i6, i2, i4) be the
ordering of the agents. The preferences of the agents are given as follows:

Agent 1: h2 P1 · · ·
Agent 2: h1 P2 · · ·
Agent 3: d P3 h4 P4 · · ·
Agent 4: e P4 · · ·
Agent 5: d P5 · · ·
Agent 6: h0 P6 · · ·
Agent 7: e P7 h3 P7 · · ·

The outcome of the YRMH-IGYT mechanism is found as follows:

Round 1. Each agent points to her first choice. Each occupied house points to its existing tenant. Each vacant house points
to f (1) = i5. Option h0 points to all newcomers. The resulting graph has three cycles, (d, i5), (h1, i1,h2, i2), and (h0, i6) (see
Fig. 1).

We remove them from the problem by assigning each agent in each cycle the option she is pointing to:

ψ f (i1) = h2, ψ f (i2) = h1, ψ f (i5) = d, ψ f (i6) = h0.

Round 2. Each remaining agent points to her first remaining choice. Each remaining occupied house points to its tenant,
since its tenant is still in the problem. Each remaining vacant house points to the highest priority remaining agent, f (3) = i3.
Option h0 points to remaining newcomers. The resulting graph has a single cycle (e, i3,h4, i4) (see Fig. 2). We remove it
from the problem by assigning each agent in the cycle the option she is pointing to:

ψ f (i3) = h4, ψ f (i4) = e.
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Fig. 1. Round 1 of Example 1.

Fig. 2. Round 2 of Example 2.
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Fig. 3. Round 3 of Example 1.

Round 3. Only one agent is left and she is a newcomer. All houses and option h0 point to her, while she points to her first
choice remaining, house h3. We obtain a graph with the cycle (h3, i7) (see Fig. 3). We remove it from the problem and set

ψ f (i7) = h3.

The procedure is terminated, since all agents are assigned either a house or option h0.

5. Characterization of the YRMH-IGYT mechanisms

Our main result is a characterization of the YRMH-IGYT mechanism:

Theorem 1. A mechanism is Pareto-efficient, individually rational, strategy-proof, weakly neutral, and consistent if and only if it
is a YRMH-IGYT mechanism.

We present our main result through two propositions:

Proposition 1. For any ordering f ∈ F , the induced YRMH-IGYT mechanism ψ f is Pareto-efficient, individually rational, strategy-
proof, weakly neutral, and consistent.

Proposition 2. Let φ be a Pareto-efficient, individually rational, strategy-proof, weakly neutral, and consistent mechanism. Then
φ = ψ f for some f ∈ F .

We prove these propositions in Appendix A.
The interpretation of Proposition 1 is straightforward as a mechanism design result. Interpretation of Proposition 2 is

trickier. Proposition 2 says that given any mechanism that satisfies the aforementioned properties, we can find a YRMH-
IGYT mechanism that generates the same matching as the original mechanism does for each problem, thus, these two
mechanisms are equivalent. Hence, this proposition is, in a way, an implementation result. Suppose that as a mechanism
designer, we would like to fully describe a given mechanism satisfying the aforementioned properties. The mechanism is
a black box for us and all we are able to do is to execute the black box to find its outcome for any given problem. Thus,
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for us, this mechanism is a function that assigns a matching for each problem. But, this description will be demanding
in terms of information processing, execution time, and information storage space, if the domain of problems is large.
On the other hand, using the proof of Proposition 2, we can construct an ordering of agents by finding the outcome of
the mechanism for only |I| − 1 problems, instead of the whole domain (which has an exponentially increasing number
of preference profiles as |I| increases), and use the induced YRMH-IGYT mechanism to fully characterize this particular
mechanism. Therefore, Proposition 2 gives us a less demanding way of describing such a mechanism through a YRMH-IGYT
mechanism, which has the desired properties as shown by Proposition 1. This feature can be appealing in implementing
real-life market mechanisms.

6. Independence of the axioms

The following examples establish the independence of the axioms.

Example 2. Fix an ordering f ∈ F . For each problem 〈I, H, R〉, let mechanism φ assign each agent i ∈ I E her occupied
house hi , and the vacant houses are distributed to the newcomers according to the serial dictatorship induced by f : the
highest priority agent in IN is assigned her top choice in H V ∪ {h0}, the second highest priority agent is assigned her top
choice among the remaining vacant houses in H V and option h0, etc.

Mechanism φ is individually rational, strategy-proof, weakly neutral, and consistent but not Pareto-efficient.

Example 3. Fix an ordering f ∈ F and let mechanism φ be the serial dictatorship induced by f : For any problem 〈I, H, R〉,
the highest priority agent in I is assigned her top choice in H ∪ {h0}, the second highest priority agent is assigned her top
choice among remaining houses and option h0, etc.

Mechanism φ is Pareto-efficient, strategy-proof, weakly neutral, and consistent but not individually rational.

Example 4. Fix an ordering f ∈ F . Let f (1) be a potential existing tenant. Let g ∈ F be constructed from f by demoting
agent f (1) to the very end of the ordering (so that the highest priority agent under f is the lowest priority agent under g)
but otherwise keeping the rest of the priority ordering as in f . For any problem 〈I, H, R〉, let

φ[R] =
{

ψ g[R] if f (1) ∈ I E , hRih f (1) for all i ∈ I, and h ∈ H,

ψ f [R] otherwise.

That is, mechanism φ picks the outcome of the YRMH-IGYT mechanism induced by ordering g if each agent (including
agent f (1)) ranks the occupied house of agent f (1) as her last choice, and picks the outcome of the YRMH-IGYT mechanism
induced by ordering f otherwise.

Mechanism φ is Pareto-efficient, individually rational, weakly neutral, and consistent but not strategy-proof.

Example 5. Let I and H be such that |I| � 2. Let i1, i2 ∈ I be distinct agents and h∗ ∈ H�{hi}i∈IE . Let f , g ∈ F be such
that f (1) = g(2) = i1, f (2) = g(1) = i2 and f (i) = g(i) for all i ∈ I \ {i1, i2}. For any problem 〈I, H, R〉, let

φ[R] =
{

ψ f [R] if i1 ∈ I, h∗ ∈ H V and h∗Ri1 h for all h ∈ H V ,

ψ g[R] otherwise.

That is, mechanism φ picks the outcome of the YRMH-IGYT mechanism induced by ordering f if both agent i and vacant
house h∗ are present, and agent i1 prefers vacant house h∗ to any other vacant house, and mechanism φ picks the outcome
of the YRMH-IGYT mechanism induced by ordering g otherwise.

Mechanism φ is Pareto-efficient, individually rational, strategy-proof, and consistent but not weakly neutral.

Example 6. Let f , g ∈ F be such that f �= g and f (1) = g(1) = i for some i ∈ I E . For any problem 〈I, H, R〉, two cases are
possible:

• i /∈ I E : Then φ[R] = ψ f [R].
• i ∈ I E : Then let φ[R] be the outcome of the hierarchical exchange mechanism (Pápai, 2000) with the following inheri-

tence rule:
◦ All vacant houses in H V are initially inherited by agent i. During the execution of the hierarchical exchange algorithm,

if i is matched with hi , then all vacant houses are inherited according to the priority order g (i.e., vacant house h
is first inherited by agent g(2); when g(2) is matched, it is inherited by g(3), so on so forth); otherwise, they are
inherited according to priority order f in further rounds of the algorithm.

◦ For each j ∈ I E , occupied house h j is initially inherited by agent j. Once j is matched and h j is not, h j is inherited
according to the rule of the vacant houses specified above in further rounds of the algorithm.

Mechanism φ is Pareto-efficient, individually rational, strategy-proof, and weakly neutral but not consistent.
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Example 7. Another example regarding the consistency axiom is as follows: Let f , g ∈ F be such that f �= g . For any
problem 〈I, H, R〉, let

φ[R] =
{

ψ f [R] if there are odd number of vacant houses,
ψ g[R] if there are even number of vacant houses.

Mechanism φ is Pareto-efficient, individually rational, strategy-proof, and weakly neutral, but not consistent.

Appendix A. Proofs of the results

Before, we prove our results, we state the following modification of the YRMH-IGYT algorithm. We will use this version
of the algorithm in our proofs. Since a cycle remains as a cycle in the next round if it is not removed in the previous round
in the algorithm, both versions are equivalent to each other. Let f ∈ F :

Round 1(a). Construct a graph in which each agent, each house and option h0 is a node. In this graph:

• each agent “points to” her top choice, a house or option h0,
• each occupied house hi ∈ H O points to its tenant i,
• each vacant house points to the agent with the highest priority in I under f , and
• option h0 points to all newcomers.

Since there is a finite number of agents and houses, there is at least one cycle. If each cycle includes a vacant house then
skip to Round 1(b). Otherwise consider each cycle without a vacant house. Assign each agent in such a cycle the option she
points to, a house or option h0, and remove each such cycle from the graph. Construct a new graph with the remaining
agents, houses and option h0 such that

• each remaining agent points to her first choice among the remaining houses and option h0,
• each remaining occupied house hi ∈ H O points to its tenant i,
• each vacant house points to the highest priority remaining agent under f , and
• option h0 points to all remaining newcomers.

There is a cycle. If each cycle includes a vacant house then skip to Round 1(b); otherwise carry out the implied exchange
in each such cycle and proceed similarly until either no agent is left or each remaining cycle includes a vacant house.

Round 1(b). Since each vacant house points to the highest priority agent among remaining agents under f , there is a
unique cycle in the graph, and it includes both the highest priority agent among remaining agents and a unique vacant
house. Assign each agent in such a cycle the house she points to and remove each such cycle from the graph. Proceed with
Round 2.

In general, at

Round t(a). Construct a new graph with the remaining agents, houses and option h0 such that

• each remaining agent points to her first choice among the remaining houses and option h0,
• each remaining occupied house hi ∈ H O points to its tenant i in case its tenant i remains in the problem, and to the

highest priority remaining agent under f otherwise,
• each remaining vacant house points to the highest priority remaining agent under f , and
• option h0 points to all remaining newcomers.

There is a cycle. If the only remaining cycle includes either a vacant house or an occupied house whose tenant has left,
then skip to Round t(b); otherwise carry out the implied exchange in each such cycle and proceed similarly until either no
agent is left or the only remaining cycle includes either a vacant house or an occupied house whose tenant has left.

Round t(b). There is a unique cycle in the graph, and it includes the highest priority agent among remaining agents under
f and either a vacant house or an occupied house whose tenant has left. Assign each agent in such a cycle the house she
points to and remove each such cycle from the graph. Proceed with Round t+1.

The algorithm terminates when there is no agent left in the graph.
In the rest of the paper, when we talk about “the YRMH-IGYT algorithm” or “the algorithm”, we will be referring to the

above modified version.
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Proof of Proposition 1. Let f ∈ F . Pareto efficiency, individual rationality, and strategy-proofness of ψ f follows from Abdulka-
diroğlu and Sönmez (1999). Weak neutrality of ψ f directly follows from the description of the YRMH-IGYT algorithm (i.e.,
under the relabeled economy, the relabeled version of the same sequence of cycles will form).

We next prove that ψ f is consistent. Fix a problem 〈I, H, R〉. Let J ⊂ I be such that ψ f [R]( J ) ∩ {hi}i∈I E \ J = ∅ and G ⊂ H

so that the reduced problem 〈I \ J , H \ (ψ f [R]( J ) ∪ G), R−ψ f [R]( J )∪G
− J 〉 is well-defined. Consider the execution of the YRMH-

IGYT algorithm to obtain matching ψ f [R] and suppose it terminates after round t∗ . For any t ∈ {1,2, . . . , t∗}, let At be the
set of agents who formed cycles and received their assignments in Round t(a), and let Bt be the set of agents who formed
a cycle and received their assignments in Round t(b). Since no agent in J is assigned the occupied house of an agent in
I E \ J , set J can be partitioned as {It , J t}t∈{1,2,...,t∗} where

• It ⊆ At is a set of agents who form one or more cycles in Round t(a) of YRMH-IGYT algorithm, and
• J t ⊆ Bt is a set of agents { j1, j2, . . . , jk} such that

1. ψ f [R]( j�) = h j�+1 for any � ∈ {1,2, . . . ,k − 1}, and

2. ψ f [R]( jk) is a vacant house or the occupied house of an existing tenant in
⋃t−1

s=1 J s .

Consider, the reduced problem R−ψ f [R]( J )∪G
− J , and the execution of YRMH-IGYT algorithm to obtain ψ f [R−ψ f [R]( J )∪G

− J ].
Round 1(a): In Round 1(a), having removed the agents in J has no affect on any remaining cycles and all agents in A1 \ I1

form the same cycles as in the original problem. Since some of the houses in the original problem are removed in the
reduced problem, cycles that form in subsequent rounds in the original problem may form earlier in Round 1(a) in the
reduced problem. A cycle that is not removed remains a cycle in subsequent rounds until removed. Keep any cycle involving
agents in I \ (A1 ∪ B1) until the round it formed under the original problem and skip to Round 1(b).

Round 1(b): If J 1 = B1, then the exact same cycle forms in Round 1(b) as before and each agent in B1 receives the same
assignment as before. If J 1 = ∅ then this round is skipped. Let J 1 ⊂ B1 be such that J 1 �= ∅. Let (hv , i1,hi2 , i2, . . . ,hik , ik) be
the cycle formed in Round 1(b) of the original problem where i1 is the highest priority agent in I \ A1 under ordering f and
hv is a vacant house. We have J 1 = {i�, i�+1, . . . , ik} for some � ∈ {2, . . . ,k} for otherwise someone in J1 would have been
assigned the occupied house of an existing tenant who has been removed (and thus the reduced problem would not have
been well-defined). Having been the highest priority agent in a larger set, agent i1 is still the highest priority agent among
the remaining agents. Moreover since agent i� has been removed, house hi� is a vacant house in the reduced problem.
Hence house hi� points to i1 in Round 1(b). In addition agent i1 points to hi2 (as before), house hi2 points to agent i2 (as
before), . . . , agent i�−1 points to hi� (as before). Hence (hi� , i1,hi2 , . . . ,hi�−1 , i�−1) is a cycle in Round 1(b). Therefore each
agents in B1 \ J 1 receives the same assignment in the reduced problem as before. We remove this cycle from the reduced
problem and proceed with Round 2.

We similarly continue with Round 2, and so on.7 Therefore, each agent in I \ J is assigned the same house as under
ψ f [R], completing the proof. �
Proof of Proposition 2. Let φ be a Pareto-efficient, individually rational, strategy-proof, weakly neutral, and consistent mecha-
nism. Fix h∗ ∈ H \ {hi}i∈IE . We will recursively construct an ordering f ∈ F as follows:

• We determine f (1) as follows: Let R1 ∈ R(I, H) be such that for any i ∈ IE ,

h∗ P 1
i hi P 1

i h for any h ∈ (
H \ {

h∗,hi
}) ∪ {h0} and

for any i ∈ IN ,

h∗ P 1
i h0 P 1

i h for any h ∈ H \ {
h∗}.

By Pareto efficiency of φ, there exists some i1 ∈ I such that φ[R1](i1) = h∗ . Let f (1) = i1. Moreover, by individual ratio-
nality of φ, φ[R1](i) = hi for all i ∈ IE \ {i1} and φ[R1](i) = h0 for all i ∈ IN \ {i1}.

• For any t > 1, upon determining agents f (1), f (2), . . . , f (t − 1), we determine f (t) as follows: Let Rt ∈ R(I, H) be
such that
* Rt

i = R1
i for any i ∈ I \ { f (1), f (2), . . . , f (t − 1)},

* h0 P t
i h for any i ∈ { f (1), f (2), . . . , f (t − 1)} ∩ IN and h ∈ H, and

* hi P t
i h for any i ∈ { f (1), f (2), . . . , f (t − 1)} ∩ IE and h ∈ (H \ {hi}) ∪ {h0}.

By individual rationality of φ, φ[R1](i) = hi for all i ∈ { f (1), f (2), . . . , f (t − 1)} ∩ IE , and φ[R1](i) = h0 for all
i ∈ { f (1), f (2), . . . , f (t − 1)} ∩ IN . By Pareto efficiency of φ, φ[R1](it) = h∗ for some it ∈ I \ { f (1), f (2), . . . , f (t − 1)}.
Let f (t) = it .

7 The only difference in the argument in the following rounds is that, in Round t(b) for t ∈ {1,2, . . . , t∗}, the agent referred as house hv in our argument
could be either a vacant house or the occupied house of an existing tenant in

⋃t−1
s=1 J s .
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Fig. 4. Construction of Preference R ′
i for Case 1 with i ∈ I E .

Fig. 5. Construction of Preference R ′
i for Case 2 with i ∈ I E and ψ f [R](Bt ) consists of h and h′ in order of occurrence in the cycle and ψ f [R](i).

This uniquely defines an ordering f ∈ F . We will prove that φ = ψ f .
Fix a problem 〈I, H, R〉. We construct matching ψ f [R] by using the YRMH-IGYT algorithm. For each Round t of the

algorithm let At be the set of agents removed in Round t(a) of the algorithm and let Bt be the set of agents removed in
Round t(b) of the algorithm.

We next construct a preference profile R ′ ∈ R(I, H) that will play a key role in our proof. Consider an agent i ∈ I and let
t be such that i ∈ At ∪ Bt . Two cases are possible:

Case 1. Either i ∈ At or i ∈ Bt although she is not the highest priority agent in Bt : If i ∈ I E and ψ f [R](i) = hi or if i ∈ IN

and ψ f [R](i) = h0 then R ′
i = Ri . Otherwise, R ′

i is constructed for two subcases separately as follows:
Case 1.A. i ∈ I E : We construct R ′

i as follows:
(a) g P ′

ih ⇐⇒ g Pih for any g,h ∈ (H \ {hi}) ∪ {h0}.
(b) ψ f [R](i)P ′

ihi P ′
ih for any h ∈ (H \ {hi}) ∪ {h0} s.t. ψ f [R](i)Pih.

That is, R ′
i is obtained from Ri by simply inserting house hi right after house ψ f [R](i) and keeping the

relative ranking of the rest of the houses as in Ri (see Fig. 4).
Case 1.B. i ∈ IN : We construct R ′

i as follows:
(a) g P ′

ih ⇐⇒ g Pih for any g,h ∈ H .

(b) ψ f [R](i)P ′
ih0 P ′

ih for any h ∈ H s.t. ψ f [R](i)Pih.
That is, R ′

i is obtained from Ri by simply inserting option h0 right after house ψ f [R](i) and keeping the
relative ranking of the rest of the houses as in Ri .

Case 2. i ∈ Bt and she is the highest priority agent in Bt under ordering f : Observe that none of the agents in Bt is assigned
option h0. Let ψ f [R](Bt) be the set of houses allocated in Round t(b) of the YRMH-IGYT algorithm.
Note that if i ∈ I E , ψ f [R](i)Ri g for any g ∈ ψ f [R](Bt)∪{hi}, and if i ∈ IN , ψ f [R](i)Ri g for any g ∈ ψ f [R](Bt)∪{h0}.
Two subcases are possible:
Case 2.A. i ∈ I E : We construct R ′

i as follows:
(a) g P ′

ih ⇐⇒ g Pih for any g,h ∈ (H ∪ {h0}) \ (ψ f [R](Bt \ {i}) ∪ {hi}).
(b) g P ′

ih ⇐⇒ g Pih for any g,h ∈ ψ f [R](Bt).
(c) ψ f [R](i)P ′

i g P ′
ihi P ′

ih for any g ∈ ψ f [R](Bt \ {i}), and any h ∈ (H ∪ {h0}) \ (ψ f [R](Bt) ∪ {hi}) s.t.
ψ f [R](i)Pih.

That is, R ′
i is obtained from Ri by inserting houses in ψ f [R](Bt \ {i}) right after house ψ f [R](i) without

altering their relative ranking, inserting house hi right after that group, and keeping the relative ranking
of the rest of the houses as in Ri (see Fig. 5).

Case 2.B. i ∈ IN : We construct R ′
i as follows:

(a) g P ′h ⇐⇒ g Pih for any g,h ∈ H \ ψ f [R](Bt \ {i}).
i
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(b) g P ′
ih ⇐⇒ g Pih for any g,h ∈ ψ f [R](Bt).

(c) ψ f [R](i)P ′
i g P ′

ih0 P ′
ih for any g ∈ ψ f [R](Bt \ {i}), and any h ∈ H \ ψ f [R](Bt) s.t. ψ f [R](i)Pih.

That is, R ′
i is obtained from Ri by inserting houses in ψ f [R](Bt \ {i}) right after house ψ f [R](i) without

altering their relative ranking, inserting option h0 right after that group, and keeping the relative ranking
of the rest of the houses as in Ri .

By construction, ψ f [R ′] = ψ f [R]. We will prove four claims that will facilitate the proof of Proposition 2. We consider
the agents in A1 in the first two claims.

Claim 1. For any R̂−A1 ∈ R(I \ A1, H) and i ∈ A1 , we have φ[R ′
A1 , R̂−A1 ](i) = ψ f [R](i).

Proof of Claim 1. Fix R̂−A1 ∈ R(I \ A1, H). By induction, we will show that φ[R ′
A1 , R̂−A1 ](i) = ψ f [R](i) for all i ∈ A1.

• Partition the agents in A1 based on the cycle they belong to. Let A1
1 ⊆ A1 be the set of agents encountered in the first

cycle in Round 1(a) of the YRMH-IGYT algorithm. Two cases are possible:
Case 1. There is a newcomer in A1

1: Then A1
1 consists of a single newcomer i whose first choice is option h0. By

individual rationality of φ, we have φ[R ′
A1 , R̂−A1 ](i) = h0 = ψ f [R](i).

Case 2. There is no newcomer in A1
1: By individual rationality we have φ[R ′

A1 , R̂−A1 ](i) ∈ {ψ f [R](i),hi} for any i ∈ A1
1.

Moreover ψ f [R](i)R ′
ihi for any i ∈ A1

1. Also we have ψ f [R](A1
1) = ⋃

j∈A1
1
{h j}. Hence by Pareto efficiency,

φ[R ′
A1 , R̂−A1 ](i) = ψ f [R](i) for any i ∈ A1

1.

• Let A1
t ⊆ A1 be the set of agents removed in tth cycle in Round 1(a) of the YRMH-IGYT algorithm. In the inductive step,

assume that for any agent j removed in the previous cycles, φ[R ′
A1 , R̂−A1 ]( j) = ψ f [R]( j). Two cases are possible:

Case 1. There is a newcomer in A1
t : Then A1

t consists of a single newcomer i whose first choice is option h0 among
(H \ ⋃

t∗<t ψ f [R](A1
t∗)) ∪ {h0}. By the inductive assumption since

⋃
t∗<t φ[R](A1

t∗) = ∪t∗<tψ
f [R](A1

t∗ ), then by
individual rationality of φ, we have φ[R ′

A1 , R̂−A1 ](i) = h0 = ψ f [R](i).

Case 2. There is no newcomer in A1
t : By the inductive assumption, since

⋃
t∗<t φ[R](A1

t∗) = ⋃
t∗<t ψ f [R](A1

t∗), then by
individual rationality of φ, we have φ[R ′

A1 , R̂−A1 ](i) ∈ {ψ f [R](i),hi} for any i ∈ A1
t . Moreover ψ f [R](i)R ′

ihi for

any i ∈ A1
t , and ψ f [R](A1

t ) = ⋃
j∈A1

t
h j . Hence by Pareto efficiency, φ[R ′

A1 , R̂−A1 ](i) = ψ f [R](i) for any i ∈ A1
t . �

Note that the proof of Claim 1 is entirely driven by Pareto efficiency and individual rationality of φ. Therefore, it directly
implies the following corollary.

Corollary 1. For any R̂−A1 ∈ R(I \ A1, H), any Pareto-efficient and individually rational matching μ for problem (R ′
A1 , R̂−A1 ), and

any i ∈ A1 , we have μ(i) = ψ f [R](i).

Claim 2. For any R̂−A1 ∈ R(I \ A1, H), and any i ∈ A1 , we have φ[R A1 , R̂−A1 ](i) = ψ f [R](i).

Proof of Claim 2. Fix R̂−A1 ∈ R(I \ A1, H). For any J ⊆ A1, we will prove that φ[R J , R ′
A1\ J

, R̂−A1 ](i) = ψ f [R](i) for all i ∈ A1

by induction on the size of J .

• Let J = { j} ⊆ A1. If ψ f [R]( j) =
{

h j if j ∈ I E

h0 if j ∈ IN
then R ′

j = R j by construction of R ′
j . In this case, by Claim 1

φ
[

R j, R ′
A1\{ j}, R̂−A1

]
( j) = φ

[
R ′

A1 , R̂−A1

]
( j) = ψ f [R]( j).

Suppose ψ f [R]( j) �= h j if j ∈ I E and ψ f [R]( j) �= h0 if j ∈ IN . By strategy-proofness of φ,

φ
[

R j, R ′
A1\{ j}, R̂−A1

]
( j)R jφ

[
R ′

A1 , R̂−A1

]
( j) and φ

[
R ′

A1 , R̂−A1

]
( j)R ′

jφ
[

R j, R ′
A1\{ j}, R̂−A1

]
( j).

The above relation, construction of R ′
j , and Claim 1 imply that (see, for example, Fig. 6 for the case j ∈ I E )

φ
[

R j, R ′
1 , R̂−A1

]
( j) = φ

[
R ′

1 , R̂−A1

]
( j) = ψ f [R]( j).
A \{ j} A
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Fig. 6. For the case with j ∈ I E , φ[R j , R ′
A1\{ j}, R̂−A1 ]( j) = φ[R ′

A1 , R̂−A1 ]( j) = ψ f [R]( j) by strategy-proofness.

Therefore, while problems (R j, R ′
A1\{ j}, R̂−A1 ) and (R ′

A1 , R̂−A1 ) differ in preferences of agent j, her assignment under

φ does not differ in these two problems. Hence matching φ[R j, R ′
A1\{ j}, R̂−A1 ] not only has to be Pareto-efficient and

individually rational under (R j, R ′
A1\{ j}, R̂−A1 ) but also under (R ′

A1 , R̂−A1 ), and therefore, by Corollary 1,

φ
[

R j, R ′
A1\{ j}, R̂−A1

]
(i) = ψ f [R](i) for all i ∈ A1.

• Fix k ∈ {1, . . . , |A1| − 1}. In the inductive step, assume that for any J ⊂ A1 with | J | � k,

φ
[

R J , R ′
A1\ J , R̂−A1

]
(i) = ψ f [R](i) for all i ∈ A1. (1)

Fix J ⊆ A1 such that | J | = k + 1. Fix j ∈ J . If ψ f [R]( j) =
{

h j if j ∈ I E

h0 if j ∈ IN
then R ′

j = R j by construction of R ′
j . In this

case,

φ
[

R J , R ′
A1\ J , R̂−A1

]
( j) = φ

[
R J\{ j}, R ′

A1\( J\{ j}), R̂−A1

]
( j) = ψ f [R]( j), (2)

where the second equality follows from the inductive assumption Eq. (1) (since | J \ { j}| = k).
Suppose ψ f [R]( j) �= h j . By strategy-proofness of φ, we have

φ
[

R J , R ′
A1\ J , R̂−A1

]
( j)R jφ

[
R J\{ j}, R ′

A1\( J\{ j}), R̂−A1

]
( j) and

φ
[

R J\{ j}, R ′
A1\( J\{ j}), R̂−A1

]
( j)R ′

jφ
[

R J , R ′
A1\ J , R̂−A1

]
( j).

The above relation and the construction of R ′
j imply that

φ
[

R J , R ′
A1\ J , R̂−A1

]
( j) = φ

[
R J\{ j}, R ′

A1\( J\{ j}), R̂−A1

]
( j) = ψ f [R]( j), (3)

where the second equality follows from the inductive assumption Eq. (1). Since the choice of j ∈ J is arbitrary, Eq. (2) or
Eq. (3) hold for any j ∈ J . Therefore while problems (R J , R ′

A1\ J
, R̂−A1 ) and (R ′

A1 , R̂−A1 ) differ in preferences of agents

in J , their assignments under φ do not differ in these two problems. Hence matching φ[R J , R ′
A1\ J

, R̂−A1 ] not only

has to be Pareto-efficient and individually rational under (R J , R ′
A1\ J

, R̂−A1 ) but also under (R ′
A1 , R̂−A1 ), and therefore, by

Corollary 1,

φ
[

R J , R ′
A1\ J , R̂−A1

]
(i) = ψ f [R](i) for all i ∈ A1,

completing the induction and the proof of Claim 2. �
Let B1 = {i1, . . . , ik} and let (hv , i1,hi2 , i2, . . . ,hik , ik) be the cycle removed in Round 1(b) of the YRMH-IGYT algorithm

where agent i1 is the highest priority agent in I \ A1 under ordering f , and house hv is a vacant house. In order to simplify
the notation, let

hik+1 ≡ hv .

We have

ψ f [R](i�) = hi�+1 for all � ∈ {1, . . . ,k}.
We consider the agents in B1 in the next two claims.
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Claim 3. φ[R ′
B1 , R−B1 ](i) = ψ f [R](i) for all i ∈ B1 .

Proof of Claim 3. First of all, observe that φ[R ′
B1 , R−B1 ](i) = ψ f [R](i) for all i ∈ A1 by Claim 2. We will prove the claim by

contradiction. Suppose that there exists an agent i� ∈ B1 such that φ[R ′
B1 , R−B1 ](i�) �= ψ f [R](i�) = ψ f [R ′](i�) = hi�+1 . Pick

the last such agent in the cycle. Then

φ
[

R ′
B1 , R−B1

]
(im) = him+1 for all m ∈ {� + 1, . . . ,k} by the choice of �,

φ
[

R ′
B1 , R−B1

]
(i�) = hi� by Claim 2 and individual rationality of φ,

φ
[

R ′
B1 , R−B1

]
(i�−1) = hi�−1 by above relation, Claim 2 and individual rationality of φ,

...

φ
[

R ′
B1 , R−B1

]
(i2) = hi2 by above relation, Claim 2 and individual rationality of φ.

Since i1 is the highest priority agent in I \ A1, Case 2 applies in construction of R ′
i1

. If i1 ∈ I E , by Claim 2 and individual

rationality of φ, we have φ[R ′
B1 , R−B1 ](i1) ∈ {hi1 , . . . ,hik+1}, and since all but houses hi1 and hi�+1 are assigned to other

agents by above relations,

φ
[

R ′
B1 , R−B1

]
(i1) ∈ {hi1 ,hi�+1}.

On the other hand, if i1 ∈ IN , by individual rationality of φ we have φ[R ′
B1 , R−B1 ](i1) ∈ {h0,hi2 , . . . ,hik+1}, and since all but

house hi�+1 is assigned to other agents by above relations,

φ
[

R ′
B1 , R−B1

]
(i1) ∈ {h0,hi�+1}.

But house hi�+1 can neither be left unmatched nor be matched with agent i1 under φ[R ′
B1 , R−B1 ] for otherwise assigning

house him+1 to agent im for all m ∈ {1, . . . , �} (and keeping the other assignments the same) would result in a Pareto
improvement under (R ′

B1 , R−B1 ). Therefore,

φ
[

R ′
B1 , R−B1

]
(i1) =

{
hi1 if i1 ∈ I E

h0 if i1 ∈ IN
and φ

[
R ′

B1 , R−B1

]
( j1) = hi�+1 for some j1 ∈ I \ (

A1 ∪ B1).
We will iteratively construct a set of agents S and a restricted preference profile R ′′

S . Set S and profile R ′′
S will be used to

reduce the problem by removing agents in T = I \ ({i1} ∪ S) and their assigned houses φ[R ′
B1 , R ′′

S , R−B1∪S ](T ). The reduced
problem will be well-defined by the construction of S and R ′′

S . By invoking consistency in the reduced problem, we will be
able to show the required contradiction.

Iteratively form set S as follows:

Step 1. Let j1 ∈ S (i.e., agent j1 is the first agent to be included in set S). Recall that φ[R ′
B1 , R−B1 ]( j1) = hi�+1 . Let prefer-

ences R ′′
j1

∈ R( j1, H) be such that

R ′′
j1
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ[R ′
B1 , R−B1 ]( j1)︸ ︷︷ ︸

=hi�+1

P ′′
j1

h j1 P ′′
j1

h for all h ∈ (H \ {hi�+1 ,h j1}) ∪ {h0} if j1 ∈ I E ,

φ[R ′
B1 , R−B1 ]( j1)︸ ︷︷ ︸

=hi�+1

P ′′
j1

h0 P ′′
j1

h for all h ∈ H \ {hi�+1} if j1 ∈ IN .

Consider the problem (R ′
B1 , R ′′

j1
, R−B1∪{ j1}). By Claim 2,

φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
(i) = ψ f [R](i) for all i ∈ A1. (4)

By strategy-proofness of φ,

φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
( j1)R ′′

j1
φ
[

R ′
B1 , R−B1

]
( j1)︸ ︷︷ ︸

=hi�+1

and since house hi�+1 is the top choice under R ′′
j1

φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
( j1) = φ

[
R ′

B1 , R−B1

]
( j1) = hi�+1 . (5)

Therefore
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φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
(i�+1) = hi�+2 by Eqs. (4), (5), and individual rationality of φ,

...

φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
(ik) = hik+1 by Eq. (4), above relation, and individual rationality of φ

and

φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
(i�) = hi� by Eqs. (4), (5), and individual rationality of φ

...

φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
(i2) = hi2 by Eq. (4), above relation, and individual rationality of φ.

Eq. (4), above relations, and individual rationality of φ imply

φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
(i1) =

{
hi1 if i1 ∈ I E ,

h0 if i1 ∈ IN .

Step 2. If j1 ∈ IN or j1 ∈ I E and there is no agent j2 ∈ I \ (A1 ∪ B1) such that φ[R ′
B1 , R ′′

j1
, R−B1∪{ j1}]( j2) = h j1 then terminate

the construction of S . (Thus S = { j1}.) Otherwise such agent j2 is the second agent to include in set S and let
preferences R ′′

j2
∈ R( j2, H) be such that

R ′′
j2
:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ[R ′
B1 , R ′′

j1
, R−B1∪{ j1}]( j2)︸ ︷︷ ︸
=h j1

P ′′
j2

h j2 P ′′
j2

h for all h ∈ (H \ {h j1 ,h j2}) ∪ {h0} if j2 ∈ I E ,

φ[R ′
B1 , R ′′

j1
, R−B1∪{ j1}]( j2)︸ ︷︷ ︸
=h j1

P ′′
j2

h0 P ′′
j2

h for all h ∈ H \ {h j1} if j2 ∈ IN .

By Claim 2,

φ
[

R ′
B1 , R ′′

{ j1, j2}, R−B1∪{ j1, j2}
]
(i) = ψ f [R](i) for all i ∈ A1. (6)

By strategy-proofness of φ,

φ
[

R ′
B1 , R ′′

{ j1, j2}, R−B1∪{ j1, j2}
]
( j2)R ′′

j2
φ
[

R ′
B1 , R ′′

j1
, R−B1∪{ j1}

]
( j2)︸ ︷︷ ︸

=h j1

which in turn implies

φ
[

R ′
B1 , R ′′

{ j1, j2}, R−B1∪{ j1, j2}
]
( j2) = φ

[
R ′

B1 , R ′′
j1
, R−B1∪{ j1}

]
( j2) = h j1 .

Therefore by individual rationality of φ, Eq. (6), and construction of R ′′
j2

,

φ
[

R ′
B1 , R ′′

{ j1, j2}, R−B1∪{ j1, j2}
]
( j1) = hi�+1 ,

which in turn implies (using a similar argument as in Step 1)

φ
[

R ′
B1 , R ′′

{ j1, j2}, R−B1∪{ j1, j2}
]
(im) = him+1 for all m ∈ {� + 1, . . . ,k},

φ
[

R ′
B1 , R ′′

{ j1, j2}, R−B1∪{ j1, j2}
]
(im) = him for all m ∈ {2, . . . , �},

φ
[

R ′
B1 , R ′′

{ j1, j2}, R−B1∪{ j1, j2}
]
(i1) =

{
hi1 if i1 ∈ I E ,

h0 if i1 ∈ IN .

We continue iteratively and form set S = { j1, j2, . . . , js} ⊆ I \ (A1 ∪ B1) and preference profile (R ′
B1 , R ′′

S , R−B1∪S ) such
that

if js ∈ I E then φ
[

R ′
B1 , R ′′

S , R−B1∪S

]
(i) �= h js for any i ∈ I,

φ
[

R ′
B1 , R ′′

S , R−B1∪S

]
( jm) = h jm−1 for all m ∈ {2, . . . , s},

φ
[

R ′
B1 , R ′′

S , R−B1∪S

]
( j1) = hi�+1 , and

φ
[

R ′
B1 , R ′′

S , R−B1∪S

]
(i1) =

{
hi1 if i1 ∈ I E ,

h if i ∈ I .
0 1 N
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Observe that { j1, . . . , js−1} ⊆ I E , and one of the following statements holds: (i) js ∈ IN , or (ii) js ∈ I E and there is no agent
i ∈ I such that φ[R ′

B1 , R ′′
S , R−B1∪S ](i) = h js . For otherwise, agent i would also be included in set S . Therefore, upon removing

agents in T = I \ ({i1}∪ S) and their assigned houses G = φ[R ′
B1 , R ′′

S , R−B1∪S ](T ), the reduced problem (R ′−G
i1

, R ′′−G
S ) is well-

defined. Note that the set of remaining agents is {i1}∪ S , and house hi�+1 is a vacant house in the reduced problem (possibly
together with other vacant houses). By consistency of φ, we have

φ
[

R ′−G
i1

, R ′′−G
S

]
(i) = φ

[
R ′

B1 , R ′′
S , R−B1∪S

]
(i) for all i ∈ {i1} ∪ S.

In the rest of the proof, for the sake of notation we set

h j0 ≡ hi�+1 .

Note that the preference relation profile (R ′−G
i1

, R ′′−G
S ) ∈ R({i1} ∪ G, H \ G) is given as follows:

R ′−G
i1

:
{

h j0 P ′−G
i1

hi1 P ′−G
i1

· · · if i1 ∈ I E ,

h j0 P ′−G
i1

h0 P ′−G
i1

· · · if i1 ∈ IN ,

R ′′−G
S\{ js}:

h j0 P ′′−G
j1

h j1 P ′′−G
j1

· · ·
h j1 P ′′−G

j2
h j2 P ′′−G

j2
· · ·

...

h js−2 P ′′−G
js−1

h js−1 P ′′−G
js−1

· · ·

R ′′−G
js

:
{

h js−1 P ′′−G
js

h js P ′′−G
js

· · · if js ∈ I E ,

h js−1 P ′′−G
js

h0 P ′′−G
js

· · · if js ∈ IN .

We consider the remaining houses H \ G and construct the following preference relation R ′′−G
i1

∈ R(i1, H \ G):

R ′′−G
i1

:

⎧⎪⎪⎨
⎪⎪⎩

h j0 P ′′−G
i1

h j1 P ′′−G
i1

· · · P ′′−G
i1

h js−1 P ′′−G
i1

hi1 P ′′−G
i1

h
for all h ∈ (H \ (G ∪ {h j0 , . . . ,h js−1 ,hi1})) ∪ {h0} if i1 ∈ I E ,

h j0 P ′′−G
i1

h j1 P ′′−G
i1

· · · P ′′−G
i1

h js−1 P ′′−G
i1

h0 P ′′−G
i1

h
for all h ∈ H \ (G ∪ {h j0 , . . . ,h js−1}) if i1 ∈ IN .

By strategy-proofness of φ,

φ
[

R ′−G
i1

, R ′′−G
S

]
(i1)︸ ︷︷ ︸

=
{

hi1 if i1 ∈ I E ,

h0 if i1 ∈ IN

R ′−G
i1

φ
[

R ′′−G
{i1}∪S

]
(i1).

We have h j0 ∈ ψ f [R](B1), we have h j0 P ′−G
i1

hi1 and therefore φ[R ′′−G
{i1}∪S ](i1) �= h j0 . Thus,

φ
[

R ′′−G
{i1}∪S

]
(i1) ∈

{ {h j1 , . . . ,h js−1 ,hi1} if i1 ∈ I E ,

{h j1 , . . . ,h js−1 ,h0} if i1 ∈ IN .

Two cases are possible:

Case 1. φ[R ′′−G
{i1}∪S ](i1) ∈ {h j1 , . . . ,h js−1 }:

Let φ[R ′′−G
{i1}∪S ](i1) = h jm such that m < s. Thus jm ∈ I E . Then by individual rationality

φ
[

R ′′−G
{i1}∪S

]
( jp) =

{
h jp if jp ∈ I E

h0 if jp ∈ IN
for all p ∈ {m + 1, . . . , s},

φ
[

R ′′−G
{i1}∪S

]
( jp) = h jp−1 for all p ∈ {1, . . . ,m}.

Therefore, upon removing all agents except {i1, jm} and all houses except

G ′ =
{ {hi1 ,h jm−1 ,h jm } if i1 ∈ I E ,

{h jm−1 ,h jm} if i1 ∈ IN

from the reduced problem R ′′−G
{i1}∪S , the further reduced problem R ′′G ′

{i1, jm} is well-defined. That is because, under

φ[R ′′−G
{i1}∪S ], hi1 is unassigned in case i1 ∈ I E , h jm is assigned to agent i1, and h jm−1 is assigned to agent jm . In this

further reduced problem, house h jm−1 is the unique vacant house. By consistency of φ, we have
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φ
[

R ′′G ′
{i1, jm}

]
(i1) = φ

[
R ′′−G

{i1}∪S

]
(i1) = h jm ,

φ
[

R ′′G ′
{i1, jm}

]
( jm) = φ

[
R ′′−G

{i1}∪S

]
( jm) = h jm−1 .

Note that the preference profile R ′′G ′
{i1, jm} ∈ R({i1, jm}, G ′) is given as follows:

R ′′G ′
i1

:
{

h jm−1 P ′′G ′
i1

h jm P ′′G ′
i1

hi1 P ′′G ′
i1

h0 if i1 ∈ I E ,

h jm−1 P ′′G ′
i1

h jm P ′′G ′
i1

h0 if i1 ∈ IN ,
R ′′G ′

jm
: h jm−1 P ′′G ′

jm
h jm P ′′G ′

jm
· · · .

We consider the houses in G ′ and construct the following preference relation R̃G ′
i1

∈ R(i1, G ′):

R̃G ′
i1

:
{

h jm−1 P̃ G ′
i1

hi1 P̃ G ′
i1

· · · if i1 ∈ I E ,

h jm−1 P̃ G ′
i1

h0 P̃ G ′
i1

· · · if i1 ∈ IN .

By strategy-proofness of φ,

φ
[

R ′′G ′
{i1, jm}

]
(i1)︸ ︷︷ ︸

=h jm

R ′′G ′
i1

φ
[

R̃G ′
i1

, R ′′G ′
jm

]
(i1).

Since h jm−1 P ′′G ′
i1

h jm by construction, φ[R̃G ′
i1

, R ′′G ′
jm

](i1) �= h jm−1 . Therefore by individual rationality of φ,

φ
[

R̃G ′
i1

, R ′′G ′
jm

]
(i1) =

{
hi1 if i1 ∈ I E ,

h0 if i1 ∈ IN ,

and this together with Pareto-efficiency of φ imply

φ
[

R̃G ′
i1

, R ′′G ′
jm

]
( jm) = h jm−1 .

Recall that i1 is the highest priority agent in I \ A1 under ordering f . In particular, i1 has higher priority than jm ,
since jm ∈ I \ (A1 ∪ B1). Let i1 = f (t) for some t . Consider the profile Rt used in construction of f . Any agent i
ordered before i1 has hi as her first choice under Rt if i ∈ IE and has h0 as her first choice under Rt if i ∈ IN ,
whereas any other agent i has the vacant house h∗ as her first choice, hi as her second choice under Rt if i ∈ IE ,

and h0 as her second choice under Rt if i ∈ IN . We have φ[Rt](i1) = h∗ and φ[Rt](i) =
{

hi if i ∈ IE
h0 if i ∈ IN

for all

i ∈ I \ {i1} by construction of f and individual rationality of φ. Therefore, upon removing all agents except {i1, jm}
and all houses except

G∗ =
{ {hi1 ,h jm ,h∗} if i1 ∈ IE ,

{h jm ,h∗} if i1 ∈ IN

from problem Rt , the reduced problem RtG∗
{i1, jm} is well-defined. (That is because, hi1 is unmatched if i1 ∈ IE , h jm is

matched to jm , and h∗ is matched to i1 under φ[Rt].) By consistency of φ,

φ
[

RtG∗
{i1, jm}

]
(i1) = φ

[
Rt](i1) = h∗ and φ

[
RtG∗

{i1, jm}
]
( jm) = φ

[
Rt]( jm) = h jm .

Note that the preference profile RtG∗
{i1, jm} ∈ R{i1, jm}, G∗ is given as follows:

RtG∗
i1

:
{

h∗ P tG∗
i1

hi1 P tG∗
i1

· · · if i1 ∈ IE ,

h∗ P tG∗
i1

h0 P tG∗
i1

· · · if i1 ∈ IN ,
RtG∗

jm
: h∗ P tG∗

jm
h jm P tG∗

jm
· · · .

There is a single vacant house in both reduced problems (R̃G ′
i1

, R ′′G ′
jm

) and RtG∗
{i1, jm} while the agents and the occupied

houses are the same. Under the profile (R̃G ′
i1

, R ′′G ′
jm

) each agent ranks the vacant house h jm−1 as the first choice, her
occupied house if she is an existing tenant or option h0 if she is a newcomer as the second choice. Similarly under
profile RtG∗

{i1, jm} each agent ranks the vacant house h∗ as the first choice, her occupied house if she is an existing

tenant or option h0 if she is a newcomer as second choice.8 However, agent jm is assigned the top ranked vacant

8 Observe that for each agent i ∈ {i1, jm} the ranking of options below

{
hi if i ∈ IE
h0 if i ∈ IN

does not matter under both preference profiles by the following

reasoning: Agent i receives an option weakly preferred to

{
hi if i ∈ IE
h0 if i ∈ IN

under either profile. When she changes the ranking of houses ranked below{
hi if i ∈ IE
h0 if i ∈ IN

by strategy-proofness of φ , she will continue to receive the same option as before. By Pareto efficiency of φ the other agent will continue to

receive the same option she was receiving before.
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house h jm−1 under φ[R̃G ′
i1

, R ′′G ′
jm

] whereas agent i1 is assigned the top ranked vacant house h∗ under φ[RtG∗
{i1, jm}],

contradicting weak neutrality of φ. Therefore, we have φ[R ′
B1 , R−B1 ](i) = ψ f [R](i) for all i ∈ B1 completing the proof

of Claim 3.

Case 2. φ[R ′′−G
{i1}∪S ](i1) =

{
hi1 if i1 ∈ I E ,

h0 if i1 ∈ IN
then by Pareto efficiency of φ

φ
[

R ′′−G
{i1}∪S

]
( jp) = h jp−1 for all p ∈ {1, . . . , s}.

Therefore, upon removing all agents except {i1, js} and all houses except

G ′ =

⎧⎪⎨
⎪⎩

{hi1 ,h js ,h js−1} if i1 ∈ I E and js ∈ I E ,

{hi1 ,h js−1} if i1 ∈ IN and js ∈ I E ,

{h js ,h js−1} if i1 ∈ IN and js ∈ I E ,

{h js−1} if i1 ∈ IN and js ∈ IN

from the reduced problem R ′′−G
{i1}∪S , the further reduced problem R ′′G ′

{i1, js} is well-defined. (That is because, i1 is un-
matched if i1 ∈ IN and hi1 is matched to i1 if i1 ∈ I E , h js−1 is matched to agent js , and h js is unmatched if js ∈ I E

under φ[R ′′−G
{i1}∪S ]). In this further reduced problem, house h js−1 is the unique vacant house. By consistency of φ, we

have

φ
[

R ′′G ′
{i1, js}

]
(i1) = φ

[
R ′′−G

{i1}∪S

]
(i1) =

{
hi1 if i1 ∈ I E ,

h0 if i1 ∈ IN ,

φ
[

R ′′G ′
{i1, js}

]
( js) = φ

[
R ′′−G

{i1}∪S

]
( js) = h js−1 .

Note that the preference profile R ′′G ′
{i1, jm} ∈ R({i1, jm}, G ′) is given as follows:

R ′′G ′
i1

:
{

h js−1 P ′′G ′
i1

hi1 P ′′G ′
i1

· · · if i1 ∈ I E ,

h js−1 P ′′G ′
i1

h0 P ′′G ′
i1

· · · if i1 ∈ IN ,
R ′′G ′

js
:

{
h js−1 P ′′G ′

js
h js P ′′G ′

js
· · · if js ∈ I E ,

h js−1 P ′′G ′
js

h0 P ′′G ′
js

· · · if js ∈ IN .

Recall that i1 is the highest priority agent in I \ A1 under ordering f . In particular, i1 has higher priority than js ,
since js ∈ I \ (A1 ∪ B1). Let i1 = f (t) for some t . Consider the profile Rt used in construction of f . Any agent i
ordered before i1 has hi as her first choice under Rt if i ∈ IE , h0 as her first choice under Rt if i ∈ IN , whereas
any other agent i has the vacant house h∗ as her first choice and hi as her second choice under Rt if i ∈ IE , h0 as

her second choice under Rt if i ∈ IN . We have φ[Rt](i1) = h∗ and φ[Rt](i) =
{

hi if i ∈ IE ,

h0 if i ∈ IN
for all i ∈ I \ {i1} by

construction of f and individual rationality of φ. Therefore, upon removing all agents except {i1, js} and all houses
except

G∗ =

⎧⎪⎨
⎪⎩

{hi1 ,h js ,h∗} if i1 ∈ IE and js ∈ IE ,

{hi1 ,h∗} if i1 ∈ IE and js ∈ IN ,

{h js ,h∗} if i1 ∈ IN and js ∈ IE ,

{h∗} if i1 ∈ IN and js ∈ IN

from problem Rt , the reduced problem RtG∗
{i1, js} is well-defined. (That is because, hi1 is unmatched if i1 ∈ IE , h js is

matched to js if js ∈ IE , and h∗ is matched to i1 under φ[Rt].) By consistency of φ,

φ
[

RtG∗
{i1, js}

]
(i1) = φ

[
Rt](i1) = h∗ and φ

[
RtG∗

{i1, js}
]
( js) = φ

[
Rt]( js) =

{
h js if js ∈ IE ,

h0 if js ∈ IN .

Note that the preference profile RtG∗
{i1, js} ∈ R({i1, js}, G∗) is given as follows:

RtG∗
i1

:
{

h∗ P tG∗
i1

hi1 P tG∗
i1

· · · if i1 ∈ IE ,

h∗ P tG∗
i1

h0 P tG∗
i1

· · · if i1 ∈ IN ,
RtG∗

js
:

{
h∗ P tG∗

js
h js P tG∗

js
· · · if js ∈ IE ,

h∗ P tG∗
js

h0 P tG∗
js

· · · if js ∈ IN .

There is a single vacant house in both reduced problems R ′′G ′
{i1, js} and RtG∗

{i1, js} while the agents and the occupied

houses are the same. Under the profile R ′′G ′
{i1, js} each agent ranks the vacant house h js−1 as the first choice, her

occupied house if she is an existing tenant or option h0 if she is a newcomer as the second choice. Similarly under
profile RtG∗

{i1, js} each agent ranks the vacant house h∗ as the first choice, her occupied house if she is an existing
tenant or option h0 if she is a newcomer as the second choice (see footnote 8). However, agent js is assigned
the top ranked vacant house h js−1 under φ[R ′′G ′

{i1, js}] whereas agent i1 is assigned the top ranked vacant house h∗

under φ[RtG∗
{i1, jm}], contradicting weak neutrality of φ. Therefore, we have φ[R ′

B1 , R−B1 ](i) = ψ f [R](i) for all i ∈ B1

completing the proof of Claim 3. �
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Fig. 7. When i1 ∈ I E , φ[R ′
B1\{i1}, R−B1\{i1}](i1) = φ[R ′

B1 , R−B1 ](i1) = ψ f [R](i1) = hi2 by strategy-proofness of φ for the case with B1 = {i1, i2, i3} and hi4 ≡ hv

is a vacant house. For the case i1 ∈ IN , replace hi1 with h0 in the figure.

Claim 4. φ[R](i) = ψ f [R](i) for all i ∈ B1 .

Proof of Claim 4. We prove the claim by induction. Starting from preference profile (R ′
B1 , R−B1 ), we will replace R ′

i with

Ri for each agent i in B1 = {i1, . . . , ik} one at a time in order. Recall that (hv , i1,hi2 , i2, . . . ,hik , ik) is the cycle removed in
Round 1(b) of the YRMH-IGYT algorithm where agent i1 is the highest priority agent in I \ A1 under ordering f , and house
hv is a vacant house. Recall that hik+1 ≡ hv . We have

ψ f [R](i�) = hi�+1 for all � ∈ {1, . . . ,k}.
• Consider the preference profile (R ′

B1\{i1}, R−B1\{i1}). By Claim 2,

φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(i) = ψ f [R](i) for all i ∈ A1. (7)

By strategy-proofness of φ,

φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(i1)Ri1 φ

[
R ′

B1 , R−B1

]
(i1)︸ ︷︷ ︸

=hi2

and

φ
[

R ′
B1 , R−B1

]
(i1)︸ ︷︷ ︸

=hi2

R ′
i1
φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(i1).

Recall that i1 is the highest priority agent in B1 under ordering f . Therefore, Case 2 applies to the construction of R ′
i1

and the above relation together with construction of R ′
i1

imply (see Fig. 7 for the case i1 ∈ I E . For the case i1 ∈ IN ,
replace hi1 with h0 in the same figure).

φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(i1) = φ

[
R ′

B1 , R−B1

]
(i1) = ψ f [R](i1) = hi2 , (8)

where the second equality follows from Claim 3.
By individual rationality of φ, Eq. (7), and construction of R ′

B1\{i1} (for which Case 1 applies) we have

φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(i�) ∈ {hi� ,hi�+1} for all � ∈ {2, . . . ,k}. (9)

Then,

φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(i2) = hi3 by Eqs. (8) and (9),

...

φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(ik) = hik+1 by above relation and Eq. (9).

We showed that

φ
[

R ′
B1\{i1}, R−B1\{i1}

]
(i) = φ

[
R ′

B1 , R−B1

]
(i) = ψ f [R](i) for all i ∈ B1.
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• Let � ∈ {2, . . . ,k} and J = {i�, . . . , ik}. In the inductive step, assume that

φ
[

R ′
J , R− J

]
(i) = ψ f [R](i) for all i ∈ B1.

We will show that φ[R ′
J\{i�}, R− J\{i�}](i) = ψ f [R](i) for all i ∈ B1.

Consider preference profile (R ′
J\{i�}, R− J\{i�}). By Claim 2,

φ
[

R ′
J\{i�}, R− J\{i�}

]
(i) = ψ f [R](i) for all i ∈ A1. (10)

By strategy-proofness of φ,

φ
[

R ′
J\{i�}, R− J\{i�}

]
(i�)Ri� φ

[
R ′

J , R− J
]
(i�)︸ ︷︷ ︸

=hi�+1

and

φ
[

R ′
J , R− J

]
(i�)︸ ︷︷ ︸

=hi�+1

R ′
i�
φ
[

R ′
J\{i�}, R− J\{i�}

]
(i�)

and this together with construction of Ri� (for which Case 1 applies) imply

φ
[

R ′
J\{i�}, R− J\{i�}

]
(i�) = φ

[
R ′

J , R− J
]
(i�) = ψ f [R](i�) = hi�+1 , (11)

where the second equality follows from the inductive assumption.
By individual rationality of φ, Eq. (10), and construction of R ′

J\{i�} (for which Case 1 applies) we have

φ
[

R ′
J\{i�}, R− J\{i�}

]
(im) ∈ {him ,him+1} for all m ∈ {� + 1, . . . ,k}. (12)

Then,

φ
[

R ′
J\{i�}, R− J\{i�}

]
(i�+1) = hi�+2 by Eqs. (11) and (12),

...

φ
[

R ′
J\{i�}, R− J\{i�}

]
(ik) = hik+1 by above relation and Eq. (12).

Hence, we showed that

φ
[

R ′
J\{i�}, R− J\{i�}

]
(i) = φ

[
R ′

J , R− J
]
(i) = ψ f [R](i) for all i ∈ J . (13)

We are ready to complete the induction by invoking consistency: Upon removing agents in J = {i�, . . . , ik} and their
assignments

φ
[

R ′
J\{i�}, R− J\{i�}

]
( J ) = φ

[
R ′

J , R− J
]
( J ) = {hi�+1 , . . . ,hik+1} (14)

from problems (R ′
J\{i�}, R− J\{i�}) and (R ′

J , R− J ), the reduced problems are not only well-defined (recall that hik+1 is a
vacant house) but also identical. Therefore, for any i ∈ I \ J ,

φ
[

R ′
J\{i�}, R− J\{i�}

]
(i) = φ

[
R

−φ[R ′
J\{i�},R− J\{i�}]( J )

− J

]
(i) by consistency of φ,

= φ
[

R
−φ[R ′

J ,R− J ]( J )

− J

]
(i) by Eq. (14),

= φ
[

R ′
J , R− J

]
(i) by consistency of φ

and this together with Eq. (13) imply

φ
[

R ′
J\{i�}, R− J\{i�}

] = φ
[

R ′
J , R− J

]
. (15)

Eq. (15) and inductive assumption imply that

φ
[

R ′
J\{i�}, R− J\{i�}

]
(i) = ψ f [R](i) for all i ∈ B1,

completing the induction and the proof of Claim 4. �
We are ready to complete the proof of Proposition 2. By Claim 2 and Claim 4,

φ[R](i) = ψ f [R](i) for all i ∈ A1 ∪ B1. (16)
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Since for any i ∈ A1 ∪ B1, assignment ψ[R](i) is either the vacant house hik+1 , the occupied house of an agent in A1 ∪ B1,
or option h0, upon removing the agents in A1 ∪ B1 and their assigned houses included in φ[R](A1 ∪ B1) = ψ f [R](A1 ∪ B1)

from the problem R , the reduced problem R−φ[R](A1∪B1)

−A1∪B1 is well-defined. For any i ∈ A2 ∪ B2, we have

φ[R](i) = φ
[

R−φ[R](A1∪B1)

−A1∪B1

]
(i) by consistency of φ,

= ψ f [R−φ[R](A1∪B1)

−A1∪B1

]
(i) by application of Claims 2 and 4 to R−φ[R](A1∪B1)

−A1∪B1 for A2 ∪ B2,

= ψ f [R−ψ f [R](A1∪B1)

−A1∪B1

]
(i) by Eq. (16),

= ψ f [R](i) by consistency of ψ f .

We iteratively continue with agents in A3 ∪ B3, and so on to obtain

φ[R] = ψ f [R]
completing the proof.
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