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Abstract

We analyze two mechanisms designed to eliminate inefficiencies in house allocation problems
where there are both existing tenants and newcomers. The first mechanism chooses the unique core
allocation of a “sister” exchange economy constructed by endowing each existing tenant with her
current house and each newcomer with a random vacant house. The second mechanism chooses an
ordering from a given distribution and determines the final outcome as follows: Assign the agents
the best available house one-at-a-time following their ordering in the queue and whenever an agent
demands the house of an existing tenant who is still in the line, modify the queue by inserting the
existing tenant at the top. Whenever a loop of existing tenants forms, assign each of them the house
she demands and proceed. We show that the first mechanism is equivalent to an extreme case of the
second which favors the newcomers.
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1. Introduction

Motivated by real-life on-campus housing practices Abdulkdfirand S6nmez (1999)
introducehouse allocation problems with existing tenarsset of houses should be al-
located to a set of agents by a centralized clearing house. Some of the agents are existing
tenants each of whom already occupies a house and the rest of the agents are newcom-
ers. In addition to occupied houses, there are vacant houses. Existing tenants are not only
entitled to keep their current houses but also apply for other houses.

The mechanism known aandom serial-dictatorship with squatting righis used in
most real-life applications of these problefriBhis mechanism works as follows:

(a) Each existing tenant decides whether she will enter the housing lottery or keep her
current house. Those who prefer keeping their houses are assigned their houses. All
other houses become available for allocation.

(b) An ordering of agents in the lottery is randomly chosen from a given distribution of
orderings. This distribution may be uniform or it may favor some groups.

(c) Once the agents are ordered, available houses are allocated using the sehisled
dictatorship The first agent receives her top choice, the next agent receives her top
choice among the remaining houses and so on.

While this mechanism is very popular in real-life applications, it suffers from a major
deficiency. Since it does not guarantee each existing tenant a house that is as good as her
own, some existing tenants may choose to keep their houses even though they wish to
move, and this may result in loss of potentially large gains from trade. Hence this popular
mechanism is neither individually rational nor Pareto efficfe®ne can fix this deficiency
via two alternative approaches:

(1) The first approach is based on the key mechanism for an important special case of our
model. Consider the case where there are only existing tenants and occupied houses.
This special case is known &susing market¢Shapley and Scarf, 1974). For each
housing market there is a unique core allocation which also coincides with the unique
competitive allocation (Roth and Postlewaite, 1977). Core, as a mechanism, is strategy-
proof (Roth, 1982) and it is the only mechanism that is Pareto efficient, individually
rational and strategy-proof (Ma, 1994). Based on these results, core (or equivalently
the competitive mechanism) is considered the key mechanism for housing markets and
hence it is natural to consider the following mechanism for house allocation problems
with existing tenants:

(a) First construct an initial allocation by (i) assigning each existing tenant her own
house and (ii) randomly assigning the vacant houses to newcomers with uniform
distribution, and

(b) nextchoose the core of the induced housing market to determine the final outcome.

1 some examples include undergraduate housing at Carnegie-Mellon, Duke, Michigan, Northwestern and Penn-
sylvania.
2 See Chen and Sénmez (2002, 2004) for experimental evidence of this inefficiency.
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This mechanism is individually rational, Pareto efficient and strategy-proof.

(2) The second approach is a direct one. First choose an ordering of agents from a given
distribution of orderings and next determine the final outcome using the following “you
request my house—I get your turn (YRMH-IGYT)” algorithm: Assign first agent her
top choice, second agent her top choice among the remaining houses and so on, until
someone demands house of an existing tenant. If at that point the existing tenant is
already served then do not disturb the procedure. Otherwise modify the remainder of
the queue by inserting her at the top and proceed. Similarly, insert any existing tenant
who is not already served at the top of the queue once her house is demanded. If at any
point a loop forms, it is formed by existing tenants and in such cases remove all agents
in the loop by assigning them the houses they demand and proceed.

The key innovation in this mechanism is that an existing tenant whose current house
is requested is upgraded to the top of the queue before her house is assigned. As a
result it is individually rational as it assures every existing tenant a house that is at
least as good as her own. In addition it is also Pareto efficient and strategy-proof.
YRMH-IGYT algorithm reduces Gale’s top trading cycles algorithm for the special
case of housing markets and following Abdulkaditoand S6nmez (1999) we refer
above mechanism as thap trading cyclesnechanism.

In this paper we show that there is an important relation between the two mecha-
nisms described abovéhe core based mechanism is equivalent to an extreme case of the
top-trading cycles mechanism where newcomers are randomly ordered first and existing
tenants are randomly ordered neifthis result illustrates that there is a hidden bias in the
core based mechanism. Recall that in that mechanism an initial allocation is constructed by
assigning each existing tenant her current house and randomly assigning vacant houses to
newcomers. This might be interpreted as granting property rights of vacant houses to new-
comers. Therefore existing tenants who also have claims on vacant houses give up these
claims under the core based mechanism. In that sense the bias in the core based mechanism
is quite intuitive.

Our main result has an important corollary for the special caseoate allocation
problems(without existing tenants): The popular real-life mechanismdom serial dic-
tatorshipis equivalent tacore from random endowment{giere random serial dictatorship
randomly orders the agents and assigns the first agent her top choice, the next agent her top
choice among remaining houses and so on whereas core from random endowments ran-
domly chooses an initial allocation and chooses the core of the induced housing market.)
This equivalence result is originally shown by Abdulkaditoand S6nmez (1998) and it
provides important support for both mechanisms since the two key mechanisms for house
allocation problems are equivalent. The policy implication of our paper is quite different
than that of Abdulkadirglu and Sénmez (1998). While core from random endowments is
a key mechanism for house allocation problems, its extension to house allocation problems
with existing tenants is extremely biased in favor of newcomers. In most real-life applica-
tions the priority is intended for existing tenants and our result shows that the core based
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approach is not the best choice in such cddescouraged by Abdulkadigiu and Sénmez
(1998), one may be tempted to use the core based mechanism for house allocation prob-
lems with existing tenants. Our paper shows that this approach may produce an undesired
bias which can be avoided via the top trading cycles mechanism.

The rest of the paper is organized as follows: In Section 2 we formally introduce the
model as well as the special case of housing markets and Gale’s top trading cycles algo-
rithm. In Section 3 we introduce the two mechanisms studied in the paper and analyze
the dynamics of the YRMH-IGYT algorithm. In Section 4 we present our equivalence re-
sult and its corollary in the context of house allocation problems. Finally in Section 5 we
conclude.

2. House allocation with existing tenants

A set of houses (or other indivisible goods) should be allocated to a set of agents by a
centralized clearing-house. Some of these agents are existing tenants each of whom already
occupies a house, the rest of the agents are newcomers and there are houses which are
vacant. Existing tenants are not only entitled to keep their current houses but also to apply
for other houses if they wish. The main real-life application we have in mind is on-campus
house allocation.

Formally, ahouse allocation problem with existing tenagésdulkadiralu and Son-
mez, 1999) is a five-tupleAg, An, Ho, Hy, P) whereAg = {a1, az, ..., a,} is afinite set
of existing tenantsdy = {a,+1. ..., an+m} is a finite set of newcomers{p = {hy}aca,
is a finite set of occupied housdsy is a finite set of vacant houses, aRg= (P, )aeauay
is a list of strict preference relations. Lat= Ag U Ay denote the set of all agents and
H = Hp U Hy denote the set of all houses. We assume hat= |A| =n + m and
thus|Hy| = |Ay| = m. Each agent € A has a strict preference relatid) on the set of
housed. Let R, denote the “at-least-as-good-as” relation associatedRyitPreferences
are fixed throughout the paper.

A matchingu is an assignment of houses to agents such that each agent is assigned one
house and each house is assigned to a different agent. Formally speaking a matching is a
one-to-one mapping : A — H. For alla € A, we referu(a) as the assignment of agent
a underu. Let M be the set of all matchings. Note thatl| = (n + m)!.

A lotteryis a probability distribution over all matchings. LatM denote the set of all
lotteries. In order to simplify the exposition we abuse the notation and Eso denote
the lottery that assigns probability 1 to matchijag

3 One could argue that the setup itself favors existing tenants since they each have a current house that they
could keep assuring a lower bound on their welfare and therefore it is only fair that the chosen mechanism favors
the newcomers for the vacant houses. In our view this normative issue shall be resolved by the central planner.
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2.1. Housing markets

The class ohousing marketéShapley and Scarf, 1974) is an important subclass of our
model where there are only existing tenants and occupied héusesnally a housing
market is a four-tupléA, H, P, u) where A is a finite set of agentd/ is a finite set of
houses,P is a list of strict preference relations, apdis a matching which specifies the
initial allocation. Throughout the paper we fix H and P so that each matching defines
a housing market.

Given a housing market, the coalitionT C A blocksa matching; € M if there exists
a matchingv € M such that

() v@)e{the H: h=pu(d") forsomed’ c T} foralla e T,
(i) v(a)R,n(a)forallae T, and
(i) v(a)Pun(a) forsomea e T.

A matchingp is in thecore of a housing market if it is not blocked by any coalition.

The core plays the key role for housing markets. Roth and Postlewaite (1977) show that
there is a unique matching in the core of each housing market which also coincides with the
unique competitive allocation. The core as a mechanism is strategy-proof (Roth, 1982) and
it is the only mechanism that is Pareto efficient, individually rational and strategy-proof
(Ma, 1994).

2.2. Gale’s top trading cycles algorithm

Gale’s top trading cycles algorithfGTTCA) is an iterative algorithm which is used to
find the unique core allocation of a housing market. This algorithm is one of the two key
algorithms in this paper and it is defined as follows:

Round 1 Each agent points to the agent who owns her most preferred house. Since the
number of agents is finite, there is at least one cycley(eis either a singletotia) who
points to herself or an ordered ligtl, . .., a*) of agents where? points toa*, a* points
to a1, ..., a2 points toal). In each cycle corresponding trades are performed and all
agents in a cycle are removed together with their assignments. (Note that all of them are
assigned their most preferred houses.) If there are remaining agents then we proceed with
the next round.

In general,

Round:. Each remaining agent points to the agent who owns her most preferred house
among those remaining in the market. In each cycle corresponding trades are performed
and all agents in a cycle are removed together with their assignments. If there are remaining
agents then we proceed with the next round.

By the finiteness of agents, at least one cycle forms at each round so that the algorithm
terminates in at mos#| rounds.

4 See Moulin (1995) for an extensive analysis of housing markets.
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3. Matching and lottery mechanisms

A matching mechanisis a systematic procedure to select a matching for each house
allocation problem with existing tenants. Similarlylatery mechanisnis a systematic
procedure to select a lottery for each problem.

3.1. Core based mechanisms

Let M* ={u € M: u(a) =h, foralla € Ag} be the set of matchings which assign
each existing tenant her current house. Note thdt| = m!. For givenA, H and for
eachu e M* define mechanism* as follows: For any preference profile mechanigtn
interpretsu as the initial allocation and chooses the core of the induced housing market.
Since the preferences are fixed throughout the paper, we denote the outcome of mechanism
oM also withg* dropping the argument ip“ (P).

Since core is the key mechanism for housing markets, it is natural to consider the fol-
lowing lottery mechanism for house allocation problems with existing tenants:

(1) For each problem, first construct an initial endowment by (i) assigning each existing
tenant her current house and (ii) randomly assigning vacant house to newcomers with
uniform distribution, and

(2) next choose the core of the induced housing market as the final outcome.

Let us refer this mechanism as mechaniniormally,
1

neM*
3.2. Mechanisms through a direct approach

Let f:{1,...,n +m} — A be a bijection andF be the class of all such bijections.
We refer each such bijection as ardering of agents and denote it as the ordered list
(fQ), f(),..., f(n +m)). For any orderingf € F, its inverse f~1(.) is defined as
f~Y@) =i ifand only if f(i) = a. For eachA* C A, a bijectionf : {1, ..., |A*|} > A*
is referred as aub-order Here agentf (1) is theheadand agentf (|A*|) is thetail of the
sub-orderf.

For a given orderingf € F consider the following you request my house—I get your
turn (YRMH-IGYT)” algorithm (Abdulkadir@jlu and S6nmez, 1999): For any given or-
dering f, assign the first agent her top choice, the second agent her top choice among the
remaining houses, and so on, until an agedemands housk,’ of an existing tenant’.

If at that point existing tenant’ is already served then do not disturb the procedure. Oth-
erwise, modify the queue by inserting existing ten&rb the top so that existing tenamt

is at the top of the line, ageatis second in the line and the rest of the line is uninterrupted.
Next it is the turn of existing tenamat and there are three possibilities:

(1) Existing tenantz’ demands her own houdg,: In this case existing tenant is as-
signed her own housle, ; next, once again, it is the turn of agenaind she demands
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her top choice among the remaining houses and the procedure continues in a similar
way.

(2) Existing tenant’ demands an available housedhat is either vacant or that used to
be the house of an existing tenant who is already assigned another house: In this case
existing tenant’ is assigned the available houseagenta is assigned houseg,/, and
the procedure continues with the next agent in line.

(3) Existing tenant’ demands housk, of another existing tenamt’ who is still in the
line: In this case modify the queue by inserting existing terménat the top so that
existing tenant” is at the top of the line, existing tenaditis second in the line, agent
a is third in the line and the rest of the line is uninterrupted. Next it is the turn of
existing tenant” and the procedure continues in a similar way.

As we proceed, existing tenants may form loop-orderslo@p-orderis either a sin-
gleton(a) who demands her own house or an ordered(i$t . . . , a*) of existing tenants
where agentz! demands the house of agerft, agenta® demands the house of agent
a1, ..., agenu? demands the house of agerit) In such cases, remove all agents in the
loop-order by assigning them the houses they demand and proceed.

For any orderingf € F, let ¢/ denote the induced matching mechanism through
YRMH-IGYT algorithm. Following Abdulkadirglu and S6nmez (1999), we refer this
mechanism as thep trading cycles mechanisi8ince the preferences are fixed, we de-
note the outcome of YRMH-IGYT algorithm also with/ dropping the argument in
¥/ (P). In this paper we are particularly interested in orderings which place existing ten-
ants at the end of the line giving priority to newcomers. Deffne- {(feF: )<
f~Ya) foralla e Ay anda’ € Ag}. Note that|.7-‘| =n!m!. Define mechanisn# as

= f
v = Zm,n.w
feF

That is, an ordering” among those which give priority to newcomers is randomly chosen
with uniform distribution and next the outcome is obtained using YRMH-IGYT algorithm.

3.3. Dynamics of YRMH-IGYT algorithm

Since YRMH-IGYT algorithm is key to this paper, it is crucial to understand how it
works. For a given ordering, the serial-dictatorshipinduced by allocates the houses
as follows: The first agent receives her top choice, the next agent receives her top choice
among the remaining houses and so on. For a given ordéring, construct theffective-
orderey € F as follows: Run YRMH-IGYT algorithm and order agents in the same order
their assignments are finalized. When there is a loop-order, order these agents as in the
loop-order.

We illustrate the construction afy with the following example. Later on we use the
same example to illustrate other constructions that are crucial to this paper. Example 1 is
rather involved in order to capture every key aspect of these constructions.

Examplel.Let Ag = {a1, a2, as, aa, as, ag, a7, ag, ag} be the set of existing tenanty =
{a10, a11, a12, a13, a14, ais, a1} be the set of newcomersly = {ha, h2, h3, ha, hs, he, h7,
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hg, hg} be the set of occupied houses, afigd = {h10, h11, h12, h13, h1a, h1s, hie} be the
set of vacant houses. (Hekg is the current house of existing tenamtfor i < 9.) Let the
preference profile® be given as:

Ag Ay
ai az az a4 as as ay ag ag aip ai1 aiz aiz ai4 Ais daie
his hz hi h2 hg he he he hi1 h7 h2 ha he hg hi hs
© hg hy i i hy hip hs ha hig hiz i i
. . b hie |

hi1o

Let f = (a13, a1s, a11, a14, a12, a1e, d10, d1, d2, a3, a4, ds, dg, A7, dg, ag) be the order-
ing of the agents. Figures 1 through 3 illustrate the dynamics of the YRMH-IGYT al-
gorithm. When an agent’s assignment unger is finalized, that is indicated with thick
arrows and reported at the right end of the figure. The effective-erderders the agents
in the same order as their assignments are finalized.

In this example agents’ assignments are finalized in the following order:

er = (as, aiz, a1, ais, as, a4, az, dail, as, aia, 412, ag, Aas, aie, Ay, a10).

The outcome of the algorithm is

Wc_(al ap a3 a4 as ag ay ag dag aip a1l 4i2 413 di4 dis a16>
his h4 h3z h2 hg he hy hi2 hi1 hio hie hia hiz hg hi hs

Recall that only existing tenants are inserted to the top of the line in the YRMH-IGYT
algorithm. Therefore the relative order of newcomers in an ordefiragd its effective-
ordere; are the same.

Observation 1. For all f € F anda,a’ € Ay we havef1(a) < f1(d) = e;l(a) <
e}l(a’).

Next consider an ordering e F. Here agents (1), ..., f(m) are newcomers. Since
the relative order of newcomers are identicaffimnde s, the effective-ordee ; will order
agents as follows: Some existing tenants (possibly none) are followgdbyfollowed by
some existing tenants (possibly none), followedf®), ..., followed by f (m), followed
by some existing tenants (possibly none).

Consider newcomey' (1) who is at the top of ordering’. If she is not at the top of
effective-ordere s that means she requested the current house of an existing tenant who
might have requested the current house of another existing tenant and so on. Insertion of

5 After the best few houses the rest of the preferences are arbitrary for each agent.
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hl h2 h3 hll h hé h'.' hS h9 h]() hll hll hlJ h14 hlS hl6

WAL

V@ a5 apn g diz i G a1 a ﬂa dy ds Qg a7 dg dyg

hy hy hy hy hs by hg he hy by hia his i his g

0 AR

ds Q13 Ai5 d1) A1 dix dig Qo Ay da 43 dg As ap dg dg

hl hZ h3 k4 hS h‘I hﬂ kg hlU hll h12 13 k14 hli hlﬁ

H/\H/\L\N\L yia) = s

a3 ai5 Ay di4 Q2 dig G 41 Gz d3 44 As A7 Ag dg

/il]i:ﬁ hd hi II;I; hlﬂ h]l hll h14 hls hlﬁ

als ay @i a1z Gig Ao a) Ay 43 04 as as ag ay

hZ h] h4 hS h'.' hB h9 th hll lhlZ hl4 hlS hlﬁ

0 AN oo

a) aps 4a)) Q4 a2 Ay dio Az A3 44 ds 47 dAg dy

/ hy by h4 hs hy ]/s I\L-; hio hiy hiy hiy his

au Q4 12 Aig Q1o 02 as 04 as a-,- ag do

h! h4 hS h‘? hS h9 th hll hll h14 hlé

J\ L

) dil G4 Q12 Gig Gio Q3 Q4 As a7 Ag Ag

Fig. 1. The sequence of first seven events under the YRMH-IGYT algorithm.

existing tenants will stop once any of these existing tenants (or the newggienerself)
requests a vacant house. Therefore one and only one agent among neyi¢bnzerd her
predecessors ia; will be assigned a vacant house. Similarly for &ng m, k agents will
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h4 hS h'.' hS h9 th hll h12 h14 hlﬁ

AN T

ay a4 A1z Aig Aip 4 As a7 Ay 49

hl h4 hS h'i’ hB h9 th hll hll hl4 hlﬁ

[\ L

. ay 4y dig dyip dig Qo G4 ds Ay dg dg

hy hy hs hy hg hy o hy by hig s
A iy Vs
W) = hy

dy Gy di Gia A1z Qg Gy G5 A7 ag Ay

!J(all) = hig

dil dia Giz i Gio s A7 dg Ay

hS h'.’ hﬂ hg th hll hlZ h14

di4 A1z dig Gp s a7 Gg Ay

hg hs h; hg mlz hyg
¢\ i J/ \L Was) = hiy
!‘f(am) =hg

dg G4 Q12 dig Ao ds a7 g

hS h’:’ hP hl(] hll h14

Wa) = hu

diz g Qo As a7 Qg

Fig. 2. The sequence of second seven events under the YRMH-IGYT algorithm.

be assigned vacant houses among newcofiiey and her predecessorsdn. Hence we
have the following observation:
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hS h’:’ h9 klO hll

A

aig dip as ay dg

hs hy he By b

N

dig dip a7 a4

hy  hs hy hy hy
N
W(as) = hy
dg as dig dip a7 W’tals):hs

h‘;‘ hlﬂ

7

dy a7

h? th

< J{\ Wan) = by

a; dp

th

Y(aw) = hio

aino

Fig. 3. The sequence of last six events under the YRMH—-IGYT algorithm.

Observation 2. Let f € F and consider the matching/ . There is one and only one agent
betweere (1) and f (1) in effective-ordek y who is assigned a vacant house. Similarly for
eachk < m, there is one and only one agent between the immediate succegs@r-ofl)
and f (k) in ey who is assigned a vacant house.

For eachf € F,YRMH-IGYT algorithm assigns houses in one of two possible ways:

(1) There is a sub-ordéu?, ..., a*) of agents where
(@) a* is a newcomerg?, ..., a*~1 are existing tenants, and
(b) a? receives a vacant house receivesa®’s house, . ., a* receivesi*~1's house.
We call each such sub-ordesarial-order(S).
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(2) There is a sub-orde@?, ..., a%) of existing tenants where! receivesa®’s house,
a* receivesa*~’s house,.. ., a® receivesa®’s house. Recall that we call each such
sub-order doop-order(L).

Therefore effective-ordee, is a sequencel,...,L,S1,L,...,L,S2,...,L, Sy,
L,..., L of serial-orders and loop-orders where the tail of serial-ofieis newcomer
f@) fori <m.

Example 1 continued. Following the dynamics of YRMH-IGYT algorithm in Example 1,
effective-ordet s is the following sequence of loop-orders and serial-orders.

(ae), (a13), (a1, ais), (a3), (aa, az), (a11), (ag, aia), (a12), (ag, as, aie), (a7), (a10) .
e S e e e e e e e ——— s N
Ly S1 S2 Lo L3 S3 Sa S5 Se Ly S7

3.4. A simplification of mechanisin

Define F* ={f € Fra<d= f~Ya) < f~Ya) foralla,a’ € Ag}. That is, order-
ings inF* not only order newcomers before existing tenants but also order existing tenants
based on their index. Note thgt™| = m!. The following lemma states that the outcome
of YRMH—-IGYT algorithm is identical for two orderings it as long as hewcomers are
ordered in the same way under both orderings.

Lemmal. Let f, g € F be such thatf (i) = g(i) for all i <m. Theny/ = 8.

Proof. Let f, g € F be such thaf' (i) = g(@@i) foralli < m.Sincef (i) =g(@) foralli <m,
YRMH-IGYT algorithm works identical for both orderings until newcony&m) (i.e. the

last newcomer) is assigned a house. Therefore for each, agenty (i) is assigned the

same house under/ andv$. Next consider the rest of the agents each of whom is an
existing tenant. YRMH—-IGYT algorithm is equivalent to GTTCA when there are only
existing tenants (Abdulkadigdu and S6nmez, 1999) and therefore each of the remaining
agents receive the unique core assignment of the remaining market under either ordering.
Hencey/ =y¢. O

Using Lemma 1 we can obtain the following simpler expression for mecha#ism
1
— —uf
=) —v.
feF*
That is, first randomly order the newcomers with uniform distribution, next order the ex-

isting tenants based on their index and finally obtain the outcome using YRMH—-IGYT
algorithm.

4, Main result

Our main contribution is that the two lottery mechanisghsand & are equivalent.
Recall that both mechanisms select a uniform lottery evematchings for each problem.
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Here is our proof strategy: For each orderifigs 7* we construct a matching(f) €
M* such thaty/ = ¢"/). Next we show that mapping: 7* — M* is a bijection by
constructing its inverse mapping. Therefore mappijng such thatf £ ¢ < n(f) # n(g)
for all f, g € F7* and this in turn implies thab = .

4.1. Construction of mapping

Construction of mapping : 7* — M* is quite involved and it requires additional no-
tation. The key challenge in this construction is finding a mapping which is a bijection (i.e.
one-to-one and onto). Otherwise it would be a straightforward task to construct a mapping
v F* — M* such thaty/ = ¢(") for each f € F*. For example one such mapping
can be constructed by simply

(1) finding the effective order, loop-orders, serial-orders; and
(2) assigning each agent at the tail of a serial-order (who is by definition a newcomer) the
vacant house which is allocated in the same serial-order.

When we run GTTCA with this initial endowment, each of the loop-orders and the
serial-orders obtained in the YRMH—-IGYT algorithm will form as a cycle, and hence the
same outcome will be obtained by the two algorithms. However the mappisgnot
one-to-one and thus two distinct orderings g may yield the same initial endowment
v(f) =v(g). We illustrate this point with our running example.

Example 1 continued. Recall that for ordering
f =(a1s, ais, a11, a14, a12, aie, aio, ai, az, as, a4, as, das, ay, dg, ag),
the effective-ordee ; is the following sequence of loop-orders and serial-orders:
(ae), (a13), (a1, a1s), (a3), (as, az), (a11), (as, a14), (a12), (a9, as, aie), (a7), (a10) .
— S S——— S S— S S——— S S————— S S —
Lq S1 S2 Lo L3 S3 Sq S5 S6 Ly S7
Next consider the ordering
g = (a1s, ai13, ai11, ai4, a12, aie, 410, a1, 42, A3, a4, ds, as, ay, dag, Ag)
which differs from orderingf in only the order of agents13 andasis. In this case the
effective order, is the following sequence of loop-orders and serial-orders
(a1, a1s), (ae), (a13), (a3), (aa, a2), (a11), (as, a14), (a12), (a9, as, a16), (a7), (a10)
R e i P e e e
S2 L1 S1 Lo L3 S3 Sa S5 Se Ly S7

which consists of the same loop-orders and same serial-orders as effective greer
though in a different sequence. Since the serial-orders are the same for the two effective
orders, the above mentioned mappingields

V(f) = v(g) = a1 a2 az a4 as as ay ag ag aip a1l di2 a13 di4 ais dig
hy ho h3 h4 hs he h7 hg hg hio hie hia h13 h12 his hi1g

showing that mapping is not one-to-one.
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We next proceed with additional notation needed for the construction of mapping
Recall that for eaclf’ e F* effective-ordere, is a sequence of serial-orders and loop-
ordersL,...,L,S1,L,...,L,S2,...,L,Sy,L,...,L. Moreover newcomer (1) is the
tail of serial-orders1, newcomerf (2) is the tail of serial-ordesy, ..., newcomerf (m) is
the tail of serial-ordes,,. We partition serial-orders and loop-orders of effective-oeger
as follows:

Step 1 Starting with agen¢ 7 (1) clear each agent in order until it is the turn of an agent
a for whom her assignment/ (a) is worse than a house previously assigned to an agent
in a serial-order. Terminate first step right after thst serial-order beforagenta. Next
proceed to step 2. If such an agent does not existdharonsists of a single step.

In general,

Stepr. Starting with the next agent clear agents one at a time until it is the turn of an
agenta for whom her assignment/ () is worse than a house previously assigned to an
agent in a serial-order of current stepTerminate step after thelast serial-order before
agenta. Next proceed to step+ 1. If such an agent does not exist thenconsists oft
steps.

Lete; consist ofT" steps. For each< T, let S’ denote the set of serial-orders«f at
stepr, £ denote the set of loop-orders of at stepr and A’ denote the set of newcomers
at stepr. For eachr < T, let Ag denote the set of agents in serial-orderssbfand A /-
denote the set of agents in loop-ordersCof For eachr < T, let ¢/ (S’) denote the set of
houses assigned to agentsdg: and/ (£') denote the set of houses assigned to agents
in A:. For any loop-ordeL let v/ (L) denote the set of houses assigned to members of
L and for any serial-ordes let v/ (S) denote the set of houses assigned to membess of

Now we iteratively construct set6?,..., G of houses as follows: First consider
houses which are assigned to agents in serial-orders. For €n¥, include in G’ all
houses iny/ (S"). We may include additional houses @, ..., GT~1 as explained be-
low.

Next consider houses which are assigned to agents in loop-orders. We skip loop-orders
in £1. Start with the first loop-ordek in £2. If any agentz € L prefers any of the current
houses irG! to her own assignment/ («) then enlarges? by including houses i/ (L).

If no such agent exists, do not changé at this point. Similarly consider each loop-order
one at a time in order. For any loop-order first determine which stegr dt belongs.
Suppose it is the turn of loop-ordére L. If any agentz in loop-orderL prefers any of
the current houses 6~ to her own assignment/ (a) then enlarges’~1 by including
houses iny/ (L). If no such agent exists then check whether any agéntoop-orderL
prefers any of the current housesGt—2 to her own assignment/ (). If so then enlarge
G'~2 by including houses iy (L). If no such agent exists then check whetherlf no
such agent exists then check whether any agémtoop-orderL prefers any of the current
houses inG* to her own assignment/ (a). If so then enlarge&? by including houses in
¥/ (L). If no such agent exists then do not change angofl, ..., G! at this point and
proceed with the next loop-ordr.

6 Construction of set&?, ..., GT makes it possible to “link” the newcomers in the same step so that their
assignments are finalized simultaneously under the GTTCA. Moreover, the construction assures that newcomers
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Remark 1. Consider any € {1,..., T}. Pick any loop-ordeL in e;. We havey/ (L) €
G' if and only if (i) there exists an ageatin loop-orderL and a housé € G’ such that
h P! (a), and (ii) for any agent’ in loop-orderL, for anyr € {r + 1,..., T}, and for
anyh’ € G" we havey/ (a’)P,h'.

For: > 1, letS* C &' be the set of serial-orders at stewhere at least one member of
the serial-order prefers a houseGhi~! to her assignment under/ . That is,

S =|SeS": hP,y (a) for some housé e ' and

some agent in serial-orderS}.

For eachr > 1, §* is non-empty by construction of stepf ¢ ; together with construction
of G'~1. Finally fort > 1, let A% be the set of newcomers each of whom is the tail of a
serial-order inS*.”

We are ready to construct mappingF™* — M*. For eachf € F*:

(1) Find effective-ordee . Find loop-orders, serial-orders and steps phs well as sets
{G"}, {S*} and{A}}.

(2) For each existing tenaate Ag, let n(f)(a) = h,. That is, each existing tenant is
assigned her current house ungeéy).

(3) Nextwe handle newcomers in step legf The number of vacant houses assigned at
step 1is equal to the number of newcomers at step ]Gl%,dm the set of vacant houses
assigned at step 1 ef;. Assign the first newcomer iay the smallest indexed house
in G1,, the second newcomer iry the second smallest indexed houséih, ..., the
last newcomer in step 1 ef; the biggest indexed house([h}, under matchingy(f).

(4) Finally, we handle newcomers in stepf e for ¢ > 1.

Recall that (i) each newcomer at stefis the tail of a serial-order and (ii) in each

serial-order only the head agent is assigned a vacant house. Newcomégrsviti be

treated differently than newcomersarj, \ A% .

(@) Newcomers iM};: Recall thatA% is the set of newcomers each of whom is the
tail of a serial-order inS*'. For each serial-orde§ € S*, find the vacant house
that is assigned in theextserial-order ofe s unlesssS is the last serial-order of
stepz. If S € S* is the last serial-order of stepthen find the vacant house that
is assigned in théirst serial-order of step. Let G}/ be the resulting set of vacant
houses. Order newcomersAf; based on their order in;. Under matching( f)

in stepr leave GTTCA before newcomers in stefor < s. Therefore it will be possible to recover the relative
ordering of two newcomers in the original ordering used by the YRMH—IGYT algorithm, provided that the two
newcomers belong to serial-orders of different steps.

7 As we have already indicated the construction of steps aind setGl, ..., GT make it possible to recover
the relative ordering of two newcomers in different steps. Depending on which serial-orders join to form cycles
in the GTTCA, recovering the relative ordering of some of the newcomers in the same cycle (who are necessarily
in the same step) will also be possible. However, this will not uniquely determine (1) the relative ordering of new-
comers in step 1, or (2) the relative ranking of newcomensﬁhfor t > 1. In the construction of matching f),
the indices of these newcomers will be utilized for this purpose.
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the first newcomer i} receives the smallest indexed houséifi, the second
newcomer inA} receives the second smallest indexed housgjfnand so on.

(b) Newcomers inA, \ AY: Undern(f) each such newcomer who is not the last
newcomer of step receives the vacant house that is assigned in the next serial-
order. If the newcomer is the last newcomer of stéipen she receives the vacant
house that is assigned in the first serial-order of step

As we already emphasized, the set of newcomagfsplays a key role in construction
of matchingn(f). Undern(f) each agent in a serial-ordére S! is assigned a house
h e ¢/ (S"). Moreover, when GTTCA is executed for housing mankef),

(i) serial-orders inS” will form one or more cycles among themselves, and
(ii) each of these cycles will contain at least one newcometjin

Here the second point ensures that each serial-ordéf imlecomes part of a cycle and
leaves the market after at least one of the serial orde§7ih. In Section 4.2 we execute
GTTCA in such a way that cycles that include newcomers are removed from the market
simultaneously. That assures that agentd -1 leave the market before agentsAr:

for anyr > 1. This point is key for construction of inverse mappi@ Section 4.2.

Remark 2. Pick anyr > 1. Execute GTTCA for housing market ) as explained in
Section 4.2. No agent iAs: leaves the market before each agent -1 does.

Next we illustrate partition ofey into its steps, construction of setsl, ..., GT,
S, 8T, A*Nl, ces A*NT and construction of mappingwith our running example.

Example 1 continued. In order to construch( f) we first partitione ¢ into its steps. Clear
each agent one at a time following the ordewrjn We can skip the agents until the end
of the first serial-ordesS;. Consider agent;. We havey / (a1) = h1s which is the top
choice of agent. So skip to agentss. We havey / (a15) = h1 which is the top choice of
agenta;s. So skip to agents. We have

¥/ (a15) Puy ¥/ (a3)
—— N ——’
=h =h3

and moreover agent;s is @ member of serial-ordef,. Therefore step 1 ends right after
the last serial-order before agent namely serial-orde$, = (a1, ais).

We can skip the agents until the end of the first serial-order of step 2. Consider:agent
We havey / (ag) = h1» and for agentig only househg is better. However housks is
assigned to agents who is a member of a loop-order. So skip to agept We have
v/ (a14) = hg which is the top choice of ageniis. So skip to agenuio. We have
¥/ (a12) = h14 and for agenti1» only househy is better. However housky is assigned
to agentzs who is a member of a loop-order. So skip to agentWe havey / (ag) = h11
which is the top choice of agent. So skip to agents. We havey / (as) = hg which is
the top choice of agenis. So skip to agentis. We havey/ (a16) = hs which is the top
choice of agent1. So skip to ageni7. We havey/ (a7) = h7 and for agent7 only house
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heg is better. However houdlg; is assigned to agemt who is a member of a loop-order.
So skip to agent;g. We have

v/ (ag) Puyo ¥/ (a10)
—— ———
=h12 =h10
and moreover agenig is a member of serial-orde$s which is in step 2. Therefore
step 2 ends right after the last serial-order before agest namely the serial-order
Se = (ag, as, aie).

Agentaio was the last agent iy so effective-ordee ; has 3 steps:

(ag), (a13), (a1, a1s) | (a3), (as, az), (a11), (as, a14), (a12), (a9, as, aie) | (a7), (a10)

S N e | N N e N e e S e e | N N -

Ly S1 So Lo L3 S3 Sa S5 Se Ly S7
Step 1 Step 2 Step 3
ThereforeA}, = {a13, a1s}, A% = {a11, a14, a12. az6} aNd A3 = {a10}.

Next, we construct sets of housé$, G2 andG3:

First consider houses that are assigned to members of serial-orders. Serial-orders of
step 1 areS1, S» and houses assigned in these serial-ordergigdehis, hy. Therefore
{h13, h1s, h1} € GL. Serial-orders of step 2 a, Sa, S5, Se and houses assigned in these
serial-orders aréae, 112, hg, h14, hi1, ho, hs. Therefore{hie, hi12, hg, h1a, h11, ho, hs}

G2. The only serial-order of step 3 By and the only house that is assigned in that serial-
order ish1g. Therefore{h1g} < G3.

Next consider houses which are assigned to agents in loop-orders. Skip loog-grder
which is in step 1. Consider loop-ordép = (a3) which is in step 2. We have

hiP., ¥/ (a3) and hye Gl
h\/_/
=h3

Hence we include housks to G since it is the only house assigned in loop-order
Thus{h3z} C G1. Next consider loop-ordets = (a4, a2) which is also in step 2. We have

h3Ps, ¥/ (a2) and hze Gt
———
=hg

Hence we include houseés, %, to G since they are the houses assigned in loop-atder
Thus{ha, h2} C GL. Finally consider loop-ordek4 = (a7) which is in step 3. There is no
househ € G2 such that

hPay ¥ (a7)
——
=h7
soh7 ¢ G2. There is no housk € G such that
h Py ¥/ (a7)
——
=h7

soh7 ¢ G either.Ly4 is the last loop-order s61, G2 andG? are finalized as:
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G = {h13, h1s, h1, h3, h2, ha), G? = {h16, h12, hg, h14, h11, ho, hs),
G® = {h1o}.

Next we construct set§*2 andS*3 of serial-orders and sekS}*\,z, Aj‘\,3 of newcomers.
We haveS*2 = {S3, S5} since

e ajyis amember ob3, hp € G, ho Py, ¥ (a11),
——

—hy4
e ajpis amember ofs, hg € G, haPuy, ¥/ (a12), and
—_——

=hy
e no member ofS; or Sg prefer any house i1 to their assignment under” .

We haveS*3 = {$;} since

e ajgis amember ob, his € G2, h12Payg Iﬁf(alo).
—_———

=h1o

ThereforeA}i,2 consists of the tails of serial-ordess, Sg andA*N3 consists of the tail of
serial-orderSy. HenceA’? = {a11, a1} and A% = {a10}.
We are ready to construct matchingf):

(1) For each existing tenant € Ag we haven(f)(a;) =h;. Thatis,n(f)(a;) =h; for
J<9.
(2) Next consider the following newcomers:
(a) Newcomers in step 1 efr:
G = {h13, h1s} is the set of vacant houses assigned at step Udne {a3, ais}.
Sinceay3 is ordered before;s in ey, newcomerayz is assigned the smaller in-
dexed house irG%, andass is assigned the bigger indexed houseGb under
n(f). Thereforen(f)(a13) = h1z andn(f)(ais) = his.
(b) Newcomers in step 2 ef;:
(i) Newcomers inA*2 = {a11, a1o}:
The two serial-orders i§*2 are S3 andSs. We haveGﬂ(,2 = {h11, h12} because
e hipis the vacant house that is assignedjnwhich is the next serial-order
after S3 and
e h11is the vacant house that is assignedignwhich is the next serial-order
after Ss.
Sinceay is ordered beforey; in e, newcomery; is assigned the smaller
indexed house ifG}? anday, is assigned the bigger indexed houseGit?
undern(f). Thereforen(f)(a11) = h11 andn(f)(a12) = hio.
(i) Newcomers inA2\ A2 = {a14, aze):
Since newcomeuti14 is @ member of serial-ordefs, her assignment under
n(f) is the vacant house that is assigned in the next serial-Sgdd@herefore
n(f)(a14) = h14. Newcomelrag is @ member of serial-ordes which is the
last serial-order of step 2. Therefore her assignment undér is the vacant
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house that is assigned in the first serial-orélgof step 2. Hence (f) (a16) =
hie.
(c) Newcomers in step 3 af;:
(i) Newcomers inA%3 = {a10}:
The only vacant house that is assigned in step}adsThereforeG*3 = {h10}
andn(f)(a10) = h1o.

There are no remaining agents and therefore

aj az az a4 as deg Ay 4dAg dAg dilp dll 4iz di3 di4 dis alG)

( ):(
s h1 h2 h3 hg hs he h7 hg hg hio h11 h12 h13 higa his hig

We next show that for any € 7*, the outcome of the YRMH-IGYT algorithm is the
same as the core of the housing market induced by initial allocatign

Lemma 2. For any f € F* we havep"/) =y /.

Proof. Let f € F*. By definitiong”() is the core allocation of housing markgtf).
We first show thap”/) (a) = ¥/ (a) for each agent in the first step ok . Once agents
in step 1 are handled, iteration of the same logic implies the desired conclusion. Let step 1
of e¢; be in the following structureL, L3, ..., Ly , ST, Ly 4.+, L3, S5, Lj, . St
So there aré; loop-orders and serial-orders in step 1 ef;. Recall that

(i) all agents in a loop-order are existing tenants,
(i) every existing tenand € A is assigned her current housgundern(f), and
(iif) each agentin aloop-order receives her top choice among the houses those are assigned
to members of her loop-order.

Consider agents in Ioop-ordér%. By definition of a loop-order, each memberbf is
assigned the current house of a member of Ioop—oﬂiemder matchingy . Sinceey is

a serial-dictatorship and sino:e} is a loop-order, each agentlri receives her top choice
among all houses under/. Moreover, by construction each agentlié is assigned her
current house under matchingy). Therefore each member bﬁ should be assigned her
top choice under matching?\/) or otherwise members df} will block ¢"/) contradict-
ing ¢"/) is the core allocation for housing markgtf). Hencep”") (a) = v/ (a) for each
agenta in loop-orderL?. Fix the assignments of these agents undéf).

Next consider agents in Ioop-ordé%. By definition of a loop-order each member of
L% is assigned the current house of a member of Ioop—dtée;mder matching//. Since
ey is a serial-dictatorship and sintle% is a loop-order, each agentln} receives her top
choice among all remaining houses (i.e. housd$ iny/ (L1)) undery /. By construction
each agent irL% is assigned her current house ungéy) and therefore under matching
") each member OL% should be assigned her top choice among all remaining houses
or otherwise members df} will block ¢"/). Hencep” /) (a) = ¢/ (a) for each agent
in loop-orderL} as well. Proceeding in a similar way we shall hg#é") (a) = v/ (a) for
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any agent: who is a member of a loop-order preceding serial—on‘i{erFix assignments
of these agents undet/) as well.

For the moment skip serial—ordﬂjf and proceed with the next Ioop—ordk}ﬁl. By de-
finition of a loop-order each member DﬁlH is assigned the current house of a member
of Ioop-orderL%lH under matchingy/. By construction of the steps of effective-order
ey, each agent inLj , prefers her assignment undgr’ to each house i/ (7).

This together withe s being a serial-dictatorship anﬂ%lJrl being a loop-order imply

that each agent iliy _, receives her top choice among all housesiin UL, v/ (L
(i.e. all houses whose recipients are not fixed so far ugdéeP) under matchingy /.
By construction each agent ih%ﬁl is assigned her current house ungéy) and there-

fore undery”/) each member of.j ,, should be assigned her top choice among all
houses inH \ U, v/ (LY or otherwise members aty ., will block /). Hence
9" (a) = ¥/ (a) for each agent in loop-orderL ,, as well. Fix the assignments of

these agents as well undg?/). Note that we are able to use the same argument as be-
fore once we observe that any member of a loop-order at step 1 prefers her assignment
undery/ to any house that is assigned to members of serial-orders at step 1 even if the
serial-order precedes the loop-order agent belongs. Proceeding in a similar way we shall
haveg")(a) = ¥/ (a) for any agentz who is a member of a loop-order at step 1. Fix the
assignments of these agents ungér) as well.

Next considerll agents in serial—ordeu&}, ey Sk1 at step 1. By definition of a serial-
order, under matching:/ each agent iM g1 is assigned either the current house of an
existing tenant ird 51 or a vacant house (that is clearly assigned at step 1). By construction
of the steps oé ¢, each agent i g1 prefers her assignment undgf to each of the houses
in ¥/ (SY). This, together witle s being a serial-dictatorship imply that each agent jn
receives her top choice among all house#in v/ (£1) (i.e. all houses whose recipients
are not fixed so far undes””) under matchingy/). By construction houses i/ (S1)
are given to members of g1 under matching (). In particular vacant houses are given to
newcomers at step 1 and occupied houses are given to their current owners each of whom
is also inAg1. Therefore each agent iig: should receive her top choice # \ vrch
underg”/) or otherwise members of 51 will block. Henceg” ) (a) = v/ (a) for any
agenta € Ag1. Fix the assignments of these agents undéf) as well.

Oncep") (a) is fixed for any agent in step 1, we can iterate the same arguments (by
handling the loop-orders first and all the serial-orders next) for agents in steps2amid
so on. This completes the proof of Lemma 22

Corollary 1. Let f € 7* and letL be any loop-order oé ;. Loop orderL forms a cycle
via GTTCA for housing market( f).

Proof. Directly follows from the proof of Lemma 2. O
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4.2. Construction of inverse mappigg

Let u € M*. Execute GTTCA. Note that it does not matter in what order cycles are
removed from the market. That is because any cycle remains a cycle as long as its mem-
bers are in the market. We first iteratively construct géfs..., HY of houses and sets
ct,...,cY of cycles as follows:

(1) Remove any cycle that exclusively consists of existing tenants. In the process new
cycles may form. Remove any new cycle that exclusively consists of existing tenants
as well. Proceed until each remaining cycle contains at least one newcomer.

(2) (a) Remove all remaining cycles (each of which contains at least one newcsimer)
multaneouslyLet C! be the set of these cycles. Order the agents in these cycles
so that the last agent in each cycle is a newcdh®&tart constructing® by in-
cluding all houses that are assigned to members of cyclés. iAt this point new
cycles that include newcomers may form. Do not remove them yet.

(b) Remove any newly formed cycle that exclusively consists of existing tenants. In-
clude inH? all houses that are assigned to members of these cycles. Proceed until
each remaining cycle contains at least one newcomer.

In general,

(1) (&) Remove all remaining cycles (each of which contains at least one newcsimer)
multaneouslylLet C'~1 be the set of these cycles. Order agents in these cycles so
that the last agent in each cycle is a newcomer. Start construgtingby includ-
ing all houses that are assigned to members of cycl€§ih At this point new
cycles that include newcomers may form. Do not remove them yet.

(b) Remove any newly formed cycle that exclusively consists of existing tenants. In-
clude in H~1 all houses that are assigned to members of these cycles. Proceed
until each remaining cycle contains at least one newcomer.

The process ends when no agent remains. For eacly, let Ax: denote the set of
agents in cycles af’ and letp” (C") denote the set of houses assigned to membetgof
For any cycleC let ¢*(C) denote the set of houses assigned to membefs of

Next construct setsi2,, ..., A% of newcomers as follows: For any> 1, consider
C € (. By construction there is at least one newcomer in cytlé\ cycle with k new-
comers can be divided infoserial-orders where each serial-order starts with an agent who
receives a vacant house ungérand ends with a newcomer. Let newcomdre a member
of cycleC € C'. In order to determine whether newcom:eloelonngﬁ\,

(i) divide cycleC into its serial orders,
(i) find the serial-ordeS newcomeuw belongs to, and

8 Note that cycle(ay, ap, as, . .., ay) is the same cycle with each of the following cycléss, a3, .. ., ag,ay),
(az,aq, ..., ag, a1, an), ..., (ag,ay,az, ..., ag—1).
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(iii) check whether there exists any ageiitin serial-orderS such thath P, ¢ (a’) for
someh € H'~1.

We haves € Xﬁ\, if and only if such an agent’ exists.

For anyr > 1, each cycleC € C' hosts a newcomer who is also a membeKQ,f. Oth-
erwise cycleC could have been removed before. For notational convenience re-organize
each cycleC € C! for anyt > 1 so that the last member 6f belongs toKﬁV.

We are now ready to construct inverse mappng* — F*. For anyu € M*:

(1) Construct set¢C'}, {H'}, {A }. Make sure that for > 1 cycles are re-organized so

that the last agent in each cyalec C’ is a member oW .

(2) For anyt, order the newcomers iA¢: before the newcomers ifigr+1.

(3) Order the newcomers i1 based on the index of their endowmentirstarting with
the agent who has the house with the smallest index.

(4) For any step > 1 order the newcomers ifi¢: as follows:

(a) First order the newcomers Lﬁj\, based on the index of their endowmentin
starting with the agent who has the house with the smallest indexX}Vet:
{aj,....a,} and without loss of generality suppose hous@}) has the small-
estindex, housg (a5) has the second smallest index and so on so forth. Therefore
we order agents iﬁﬁv as(al, ..., aj,) among themselves.

(b) In order to complete the sub-order we will insert the remaining newcometg in
between agents iﬁ’ The treatment for agert; will be slightly different so
start with newcomea2 Find the cycle newcomejr2 belongs. Find the closest
newcomera’ who precedes newcomeg in the cycle. Ifa’ € A’ then she is
aIready handled and skip to ageiit If a’ ¢ A’ then order her nght in front of
a4 and find the closest newcomet who precedes newcometf in the cycle. If
a’ e A’ then she is already handled and skip to aggntf a” ¢ A’ then order
her rlght in front of newcomes’ and proceed in a similar way untll encountering
a newcomet: € Zﬁ\,. Newcomet is already handled so skip to agesjt
Repeat this procedure for each of the agéfts. .,

Finally consider newcomei; and find the cycle she belongs. Find the closest
newcomera’ who precedes newcomé, in the cycle Ifa’ € A’ then she is
already handled and terminate the procedure: i A’N then order her at the
very end of the sub-order (that orders newcomersin) and find the closest
newcomera” who precedes newcomef in the cycle. Ifa” e A’ then she is
already handled and terminate the procedure! i Z§V then order her right in
front of newcomer’ and proceed in a similar way until encountering a newcomer
a e A',. Newcomei is already handled so terminate the procedure.

This orders newcomers iti;r among themselves in a unique way.

(5) Order the existing tenants after newcomers based on their index starting with the ex-
isting tenant with the smallest indéx.

9 Abdulkadirdglu and Sénmez (1998) study a special case of our model where there are no existing tenants.
For this case construction of mappiggsimplifies as follows: (a) Whed g = @, construction of sets of houses
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Next we illustrate construction of sef$®, ..., HV, c%,...,cV, A2 ..., AY as well
as construction of mappingwith our running example.

Example 1 continued. Let

ay dz az d4 as de dy dg dg 4io 4aill diz 4Ai3 di4q dis alG)

w=nlf)= (hl ha h3 ha hs he hy hg he hio hi1 hiz hiz his h1s hie

We first construct sets of housgd’} and sets of cycle&’} as we execute GTTCA. The
execution of GTTCA is shown in Figs. 4 through 10. In these figures for each market,
cycles that shall be immediately removed is indicated with thick arrows and cycles that
shall remain for the remaining market is indicated with light arrows.

There are two cyclegu1, ais) and(ag) for the initial market (see Fig. 4). Among the
two, the former hosts newcomefs so remove only cycléag) and set” (ag) = he.

In the remaining market there are three cyales ais), (a13) and (a7) (see Fig. 5).
Among the three the first one hosts newcomgrand second one hosts newcomes so
remove only cycléa7) and setp* (a7) = h7.

No new cycle forms in the remaining market and each of the two present cycles hosts a
newcomer (see Fig. 6). Remove both cyales a1s) and(a13) from the market simultane-
ously and leC?! be the set of these cycles. $#t(a1) = h1s, 9" (a1s) = h1, p*(a13) = h13
and include houselsss, 1, h13 in HL. At this point we have! = {(a1, a1s), (a13)} and

al-hl az-hz a3-h3 a4-h4 a5-h5
. «—p . . .

ag-hig ag-h

T- a—,--h7

-

g / \ /_7413-’13

ap-ha airhi au-hu awho  ashe

| .

ais-his .

Fig. 4. The first market obtained as GTTCA is executed.

HL, ..., HY simplifies considerably: Her&! is simply the set of houses that can be removed in Rauoid
GTTCA. (b) WhenA g = #, construction of sets of agents? , ..., A%, also simplifies considerablyt’, simply
consists of agents each of whom prefers some housg it to her assignment under*. This is because each
serial-order is a singleton for this case.

Mappingg reduces to an analogous mapping in Abdulkagliicand S6nmez (1998) under these simplifica-
tions.
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a -hl ﬂ'g-hz ﬂ'g-hg a4-h4 a5-h5

. ﬂ':,'-h';r

ap-his\ ap-ha  an-huy awho  ashe

Fig. 5. The second market obtained as GTTCA is executed.

a 1-h1 az-hz ag-hg a4-h4 a5-h5

‘hl
ais-his .
hs

a13—h1 alZ'hlz al]‘hll alO‘hIO 9-h9

Fig. 6. The third market obtained as GTTCA is executed.

{h1s, h1, h13} € HL. Note that while se€? is already determined, s&t! may grow as we
proceed.

In the remaining market there is only one cyeg) and it does not host a newcomer
(see Fig. 7). Remove it from the market, g#t(a3) = i3 and include housgs in H1. At
this point we havéh1s, i1, his, ha} € H.
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a;_-kz a3-h3 04-h4 a5—h5

hs

wch M

ai-hiy  an-hu  awhio ag-hg

Fig. 7. The fourth market obtained as GTTCA is executed.

az-hz a4'h4 aS'hS

alfhl‘/v
hy

a12'h12 6111-1111 alO'hIO ag-hg

Fig. 8. The fifth market obtained as GTTCA is executed.

In the remaining market there is only one cyée, as) which exclusively consists of
existing tenants (see Fig. 8). Remove it from the marketp&éty) = ha, ¢*(aa) = h2
and include housésy, /2 in H. At this point we havehis, k1, h1s, h3, ha, ho} € HY.

In the remaining market there are two cycless, ag, as, ais), (a12, ag, a14) each of
which includes a newcomer (see Fig. 9). Remove them from the market simultaneously
and letC? be the set of these cycles. Sgt(ag) = h11, ¢*(as) = he, ¢*(a1e) = hs,
@*(a11) = hie, 9" (ag) = h12, 9" (a14) = hg, ¢*(a12) = h14, and include housésie, 111,
hg, hs, h12, hg, h14 in HZ2. At this point we have?? = {(a11, a9, as, a1s), (a12, as, ai4)}
and{hae, h11, hg, hs, h12, hg, h1a} € H?.
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as-hs

ais-his

. > .

an-hi aw-hip  as-hy

Fig. 9. The sixth market obtained as GTTCA is executed.

ao-hi

Fig. 10. The seventh market obtained as GTTCA is executed.

In the remaining market there is only one cy@ap) which hosts newcomerig (see
Fig. 10). Remove it from the market and &t = {(a10)}. Sety* (a10) = h1o and include
househigin H3. Since there are no remaining agents we have

Ct={(a1, a15). (a13)}. C? = {(a11. as. as, a16), (a12, as, a1a) },
C*={(a10}.

= {h1s, h1, h13, h3, ha, h2}, H? = {h1, h11, ho, hs, h1p, hg, h1a},
H® = {h1o).

Next we find ZIZV and 213\,. First consider cycldai1, ag, as, aie) € C? which can be
divided into two serial-orders;1 and (ag, as, ais). Agentai1, a member of serial-order
(a11), prefershy € Htoher as&gnmerzyt“(all) = h16. Therefore the tail of this serial or-
der, namely newcomer 1, is a member of42 No-one in serial-ordefuag, as, a1g) prefers
a house inH?! to her own assignment ugder“. Therefore the tail of this serial-order,
namely newcometsg, is not a member oAIZV.

Next consider cycléas, ag, ai4) € C2 which can be divided into two serial-ordets »)
and(asg, a14). Agentar», a member of serial-ordet o), prefersis € H to her assignment
¢"(a12) = haa. Therefore the tail of this serial order, namely newcomer is a member
of A2 No-one in serial-ordefag, a14) prefers a house /! to her own assignment un-
derg“ Therefore the tail of this serial-order, namely newcomagy, is not a member
of A%
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Finally consider cyclgaio) € C3. Agentaip, @ member of serial-ordeu1g), prefers
h12 € H? to her as&gnmerq&“(alo) h10. Therefore the tail of this serial order, namely
newcomeiu1o, is @ member oﬂ . HenceA? = {a11, a12} and A = {a10}.

We are now ready to construct orderiggu).

(1) We first reorganize cycl@i11, ag, as, aie) as(ag, as, ais, a11) and cycle(a2, ag, a14)
as(ag, a14, a12) So that the last agent in both cycles is a membe?i;f

(2) Newcomers inAg1 (i.e. agentsuss, aiz) are ordered before newcomers Ag: (i.e.
agentsui1, aie, a14, a12) who are ordered before the newcomerigs (i.e agentu).

(3) Underu, newcomei; 3 has the smaller indexed housg; and newcomeii1s has the
bigger indexed housk;s. Therefore newcomers i1 are ordered agu13, ass).

(4) Among newcomers iz, first consider agents; 1, a;> who are members oAZ
Under i, newcomeray1 has the smaller indexed housg; and newcomet:12 has
the bigger indexed houda,. Therefore agents iﬁz are ordered aGi11, a12). New-
comerajz belongs to cycle(ag, ais4, a12). The closest newcomer that precedes
is newcomelai4. Sinceays ¢ AN, order her right in front of newcomer;». So far
agentsuii, a1, a14 are ordered a&u11, a14, a12). There is no other newcomer in cy-
cle (as, a4, a12) so skip to newcomet1; who belongs to cycleag, as, aig, aiy). The
closest newcomer that precedas is newcomers. Sinceass ¢ A2, order her at the
end of the sub-order that orders newcomerd ja. That takes care of newcomers in
Ac2 and they are ordered @811, a14, a12, aie).

Sinceay is the only newcomer i3, she is ordered last among the newcomers.

(5) Finally, we order existing tenants after the newcomers based on their index.

Therefore we havg(u) = (a13, ais, a11, a14, a12, aie, a10, a1, az, az, aa, as, ds, az, das,
ag). Note that, since. = n(f) we haveg(u) = f.

4.3. gis inverse mapping gf

We are going to show that(n(f)) = f via three lemmata. Lef € 7*, and construct
er, (S}, {L}, {G"}, {Ay}, andn(f). For matching)(f), construct{C'}, {H'}, {A }, and

gm(f).

Lemma 3. For anyt, each serial-ordeiS € S’ is part of a cycleC € C’. Conversely for
anyt, any cycleC € C' can be reorganized a§ = (51, . .., Sx) such thatS; € S’ for all
iefl, ... k).

Proof. We are going to prove the lemma iteratively for eaclfrix . Some of the loop-
orders in step of e; may have already formed cycles and left the market via GTTCA
before agents in serial-orders&f . The remaining ones will form cycles by Corollary 1
and leave the market after agents in serial-orde& of form one or more cycles and leave
the market. By Remark 2, serial-ordersShwill not leave the market via GTTCA before
serial-orders ir5’~1. Once all loop-orders in step t of leave the market, serial-orders in

&' will form one or more cycles among themselves and leave the market via GTTCA. That
is because
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(i) by construction of stepof e, for anya € As: and any house

he H\((L) wf(S’)) U w-f'(ﬁ’))

we havey / (a) P,h, and
(ii) by construction ofy(f), for anya € As: we haven(f)(a) = v/ (a’) for somea’ €
Agt.

Moreover, by Remark 2 no agentliy,., As- leaves the market before each agentjn
does. These together with constructiorCbcomplete the proof of Lemma 3.0

Coroallary 2. Execute GTTCA for housing markgt/). Any cycle that exclusively consists
of existing tenants is a loop-order iy.

Proof. Each loop-order irey forms a cycle via GTTCA by Corollary 1. Each remaining
agent is a member of a serial-orderegf and by Lemma 3 she leaves the market together
with all members of her serial-order (which includes a newcomer) as a part of a cycle via
GTTCA. This implies the desired conclusion

Lemma4. H! = G’ for all ¢.

Proof. For eactr we havey/ (S') € G’ by construction ofG*. Similarly for eachr we
havey"")(C") € H' by construction of’. Moreover by Lemma 2 we have'/) = y/
and by Lemma 3 we havéc: = Ag: for all r. Thereforep” /) (C?) =/ (S") for all ¢.

Claim 1. G € H! for all ¢.

Proof of Claim 1. Fix ¢. We will show thatG’\v/ (S") € H'. By construction oiG’, set
G"\y/(S") consists of houses allocated in loop-orders peach of which belongs to a
steps > ¢. Consider each of these loop-orders following their ordesinLet L be the
first loop-order such thap /(L) € G"\y/ (S"). By Corollary 1,L will form a cycle via
GTTCA and leave the market. By Remark 1(i), there exists a hbus&;’ and an agent
a in L such thath P,/ (a). SinceL is the first loop-order withy/ (L) € G'\v/(S"),
by construction ofG’ we haveh € v/ (S"). Therefore since we hawéc: = Ag: as well
as¢"") =/ and since all cycles i€’ leave the market simultaneously via GTTCA,
loop-orderL forms a cycle via GTTCA and leaves the markéter each of the cycles in
C'. Moreover by Remark 1(ii), any ageat in L prefersy/ (a”) to any house irG* for
anys > t. This together withA¢cs = Ags for all s and@”") = v/ imply that L forms a
cycle via GTTCA and leaves the mark@tforeany cycle inC* for anys > ¢. Therefore by
construction of{’ we havey /(L) C H'. Next letL’ be the second loop-order éy such
thaty /(L") € G'\y/ (S"). By Remark 1(i), there exists a housec G’ and an agent’ in
L’ such that’ P,/ (a’). By construction ofz' we haveh € v/ (S") Uy / (L). Therefore
since we haved = Ag as well asp”) = ¢/ and sinceL leaves the market after all
cycles inC’ all of which leave the market simultaneously, loop-orfléforms a cycle via
GTTCA and leaves the markafter each of the cycles i@’. Moreover by Remark 1(ii),
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any agent:” in L' prefersy/ (a”) to any house irG* for anys > . This together with
Acs = Ags for all s and) =/ imply that L’ forms a cycle via GTTCA and leaves
the market before any cycle @& for anys > ¢. Therefore by construction gfi’ we have
v/ (L) € H'. Following in a similar way we obtai@’\vy/ (S?) € H'. Moreover, since
vl (SH =" (C" € H' we haveG! C H', completing the proof of Claim 1. O

Claim 2. H' G for all ¢.

Proof of Claim 2. Fix ¢. We will show thatH’\¢"/)(C") € G'. By construction o4/, the
setH'\ ") (C") consists of the houses allocated to existing tenants who form cycles via
GTTCA and leave the market after the cyclegirand before the cycles & *+1. Consider
each of these cycles one at a time following the order they leave the market via GTTCA
(and arbitrarily order the cycles which form simultaneously). Cédie the first such cycle.

By Corollary 2,C is a loop-order ires. SinceC forms and leaves the market only after
the cycles inC’, there exists an agentin C and a housé € ¢")(C") = v/ (S") € G'

such that: P,¢"/) (a). Moreover, since forms and leaves the market before the cycles
in C'+1, we havep"/) (a”) P,»h" for any agent” in C and for any housg” € H* for any

s > t. Therefore sinc&* < H* for all s by Claim 1, we have")(a") P,»h" for any agent

a” in C and any housg” € G* for anys > . Hence by Remark 1 we hayd/)(C) c G*.

Next consider the second such cyclé By Corollary 2,C" is a loop-order ires. Since

C’ forms and leaves the market only after the cycle€’irmnd not before cycl€, there
exists an agent’ in C’ and a housé’ € o) (C) U "N (C) = ¢/ (S U (C) C G

such thatt’ P, ¢")(a’). SinceC’ forms and leaves the market before the cycled'itt,

we havep" ) (a")P,»h" for any ageniz” in C’ and for any housé” € H® > G* for

anys > t. Hence by Remark 1 we haye/)(C’) € G'. Following in a similar way, we
obtain H'\¢"")(C") € G*. Moreover, sincg" ) (C") = ¢/ (S") € G* we haveH! C G,
completing the proofs of Claim 2 and Lemma 4o O

DefineH‘% = HYN Hy. Foreachr > 1 defineﬁ{, ={he H NHy: h=n(f)(a) for
some newcomer € A\ }.

Corollary 3. Ay, = A% and H,,=G? foranyr > 1.

Proof. Immediately follows from Lemmas 2—4 and construction of s:%\t,s AN, ﬁ{, GY
forany:r. O

Lemmab. g(n(f) = f.

Proof. We will show that each agent’s order is the same urfdandg (n( f)). We proceed
by induction.

(1) Leta e A} = AgiN ANy = Agi N Ay be a newcomer witlf (i) = a for some order.
By construction ofp(f), housen(f)(a) is theith smallest indexed house kﬁ%,.
MoreoverHl = G, by Lemma 4. Thereforg(f)(a) is also theith smallest indexed
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house inH‘%. Since mapping orders newcomers iA -1 before other newcomers and
since this order is based on the index of their endowments upiger agenta should
be orderedth by orderingg(n(f)) as well.

Assume that for each stegE {2, ..., — 1} of ey and for any agent € A’,, agenta’s
order is the same undgrandg(n(f)).

We will show that for eacla € A}, = Ast N Ay = Ac: N Ay, agenta’s order should
be same undef andg(n(f)).

Recall thatA*! = A, by Corollary 3. First we show that agents ! are ordered
the same among themselves ungieand g(1(f)). Fix a* € A} and let orderingf
order herith among agents id}. By construction ofy(f), housen(f)(a*) is the
ith smallest indexed house i@}!. Moreover, by Corollary 3 we havél!, = G3!.
Therefore house(f)(a™) is theith smallest indexed house Iﬁ",. Since mapping
orders newcomers iﬁﬁv based on the index of their endowments unglef), agent
a* should be orderedth among agents imT;\, = A} by orderingg(n(f)) as well.
Next we show that the remaining newcomersiip are ordered the same undeand
g(m(f)). We have two cases to consider:

Case 1/ > 1. Let newcomer™ € A% be such that** is ordered(i — 1)th among
newcomers inA’;\,’ under f as well asg(n(f)). Consider the newcomers who are or-
dered between newcomer$* anda* under f. First consider newcomere A} \ A%}/
who is ordered right before* under f. Let S* be the serial-order newcomet be-
longs ine . By construction ofy( f), housen(f)(a) is the vacant house allocated in
S* undery/ and by Lemma 3 serial-ordeS* is a part of a cycleC € C'. These to-
gether withg"") = v/ imply that newcomer also belongs to cycl€ and she is
ordered right beforg™* in cycle C. Sincea € A\ \A} = Aﬁ\,\Z’ , she is also ordered
right before newcomer* underg(n(f)) by construction of mapping. Next consider
newcomera’ € A%\ A% who is ordered right before newcomemnder f. Let S be
the serial-order newcomaerbelongs ine ;. By construction ofy(f), housen(f)(a’)

is the vacant house allocated $Snundery/. Since newcomes belongs to cycleC,
serial-orders is part of cycleC by Lemma 3. These together wig /) =/ imply
that newcomeux’ also belongs to cycl€ and she is ordered right befasen cycleC.
Sinced’ € A\\AY = AﬁV\Zf , she is ordered right before newcomarnderg (n( f)).
Following in a similar way, we show that newcomers betwe&nanda™* under f are
ordered the same among themselves undandg (n(f)).

Case 2i = 1. By construction oA}/, newcomew* is ordered first among agents in
A’ under f. Let $* be the serial order newcomet belongs ine;. Let newcomer
a*™* e Ay, be the agent who is ordered last among newcometjjnunder f and
g(m(f)). Consider newcomers iA};, who are ordered after newcomet* under f.
Let newcomem € A}, \ A} be the last agent undgt among newcomers id’, . By
construction of)( f), housen( f)(a) is the vacant house allocatedsi undery/ and
by Lemma 3 serial-ordes* is a part of a cycle&C € C'. These together witp"(/) =
¥/ imply that newcomer also belongs to cycl€' and she is ordered right befosé

in cycleC. Sincea € A}\A} = A} \A',, she is also ordered last among newcomers
in A, underg(n(f)) by construction of mapping. Next consider newcomer’ e
A\ \AY who is ordered right before newcomemnder f. Let S be the serial-order
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newcomera belongs ines. By construction ofy(f), housen(f)(a’) is the vacant
house allocated i§ undery /. Since newcomer belongs to cycle, serial-orders

is part of cycleC by Lemma 3. These together wigh ") = v/ imply that newcomer
a’ also belongs to cycl€ and she is ordered right befofein cycle C. Sincea’ €
AV\AY = A \AY,, she is ordered right before newcomeunderg(n(f)) as well.
Following in a similar way we show that newcomers af#ét in stept of ey are
ordered the same among themselves undandg (n(f)).

This covers all newcomers iA’, and shows that they are ordered the same uyider

andg(n(f)).

This shows that newcomers are ordered the same yhdedg (n(f)). Finally existing
tenants are ordered after the newcomers based on their index undef bathg (n(f)).
This concludes the proof of Lemma 50

4.4. Proof of the main result
We are now ready to prove our main result.
Theorem 1. Lottery mechanism@ and¥ are equivalent.

Proof. We have

1 1
_ n — f
D = E m!go and ¥ = E m!1ﬂ .
neM* feF*

Both mechanisms select a uniform lottery ovgmatchings for each problem. Fix a prob-
lem. For each ordering’ € F* construct matching(f) € M*. By Lemma 2 we have
vl =" and by Lemma 5 mappingis invertible. Henceb =¥. O

4.5. Implications for the house allocation problems

A house allocation problenHylland and Zeckhauser, 1977) is a special case of our
model where there are only newcomers and vacant hdfisesopular real-life mecha-
nism in this context isandom serial-dictatorshipRandomly order the agents and assign
the first agent her top choice, the second agent her top choice among the remaining houses
and so on. Another natural mechanisntige from random endowmentRandomly al-
locate the houses to agents, interpret it as an initial endowment, and choose the core (or
equivalently competitive allocation) of the induced housing market. Abdulkgldirand
Soénmez (1998) show that the two mechanisms are equivalent and we obtain their result as
an immediate corollary to Theorem 1.

10 see also Abdulkadifiu and Sonmez (1998, 2003), Bogomolnaia and Moulin (2001), Chambers (2003),
Ehlers (2002), Ehlers and Klaus (2003a, 2003b), Ehlers Klaus and Papai (2002), Ergin (2000, 2002), Kesten
(2003a, 2003b), Miyagawa (2001, 2002), Papai (2000), Schummer (2000), Svensson (1999, 1994) and Zhou
(1990).
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Corollary 4. The random serial dictatorship is equivalent to core from random endow-
ments for house allocation problems.

Proof. YRMH-IGYT algorithm reduces to a serial-dictatorship when there are no existing
tenants. This together with Theorem 1 imply the desired resuit.

5. Conclusion

In this paper we show that there is an important relation between two intuitive house
allocation mechanisms which are designed to avoid inefficiencies in those situations where
there are existing tenants and newcomers. Since the core (or equivalently the competitive
mechanism) is the undisputed mechanism in the context of housing markets, it is tempt-
ing to extend this mechanism via constructing an initial allocation by assigning existing
tenants their current houses and randomly assigning vacant houses to newcomers. How-
ever this extended mechanism grants initial property rights of vacant houses to newcomers
and therefore its equivalence to “newcomer favoring” top trading cycles algorithm is quite
intuitive. We believe our result provides additional support for the top trading cycles mech-
anism by showing that its main competitor is a very biased special case.
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