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Abstract
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ordering from a given distribution and determines the final outcome as follows: Assign the
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1. Introduction

Motivated by real-life on-campus housing practices Abdulkadiroğlu and Sönmez (1999
introducehouse allocation problems with existing tenants: A set of houses should be a
located to a set of agents by a centralized clearing house. Some of the agents are
tenants each of whom already occupies a house and the rest of the agents are n
ers. In addition to occupied houses, there are vacant houses. Existing tenants are
entitled to keep their current houses but also apply for other houses.

The mechanism known asrandom serial-dictatorship with squatting rightsis used in
most real-life applications of these problems.1 This mechanism works as follows:

(a) Each existing tenant decides whether she will enter the housing lottery or ke
current house. Those who prefer keeping their houses are assigned their hou
other houses become available for allocation.

(b) An ordering of agents in the lottery is randomly chosen from a given distributio
orderings. This distribution may be uniform or it may favor some groups.

(c) Once the agents are ordered, available houses are allocated using the induceserial
dictatorship: The first agent receives her top choice, the next agent receives h
choice among the remaining houses and so on.

While this mechanism is very popular in real-life applications, it suffers from a m
deficiency. Since it does not guarantee each existing tenant a house that is as goo
own, some existing tenants may choose to keep their houses even though they
move, and this may result in loss of potentially large gains from trade. Hence this po
mechanism is neither individually rational nor Pareto efficient.2 One can fix this deficienc
via two alternative approaches:

(1) The first approach is based on the key mechanism for an important special case
model. Consider the case where there are only existing tenants and occupied
This special case is known ashousing markets(Shapley and Scarf, 1974). For ea
housing market there is a unique core allocation which also coincides with the u
competitive allocation (Roth and Postlewaite, 1977). Core, as a mechanism, is st
proof (Roth, 1982) and it is the only mechanism that is Pareto efficient, individ
rational and strategy-proof (Ma, 1994). Based on these results, core (or equiva
the competitive mechanism) is considered the key mechanism for housing marke
hence it is natural to consider the following mechanism for house allocation prob
with existing tenants:
(a) First construct an initial allocation by (i) assigning each existing tenant her

house and (ii) randomly assigning the vacant houses to newcomers with un
distribution, and

(b) next choose the core of the induced housing market to determine the final ou

1 Some examples include undergraduate housing at Carnegie-Mellon, Duke, Michigan, Northwestern an
sylvania.
2 See Chen and Sönmez (2002, 2004) for experimental evidence of this inefficiency.
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This mechanism is individually rational, Pareto efficient and strategy-proof.
(2) The second approach is a direct one. First choose an ordering of agents from

distribution of orderings and next determine the final outcome using the following
request my house—I get your turn (YRMH–IGYT)” algorithm: Assign first agent
top choice, second agent her top choice among the remaining houses and so o
someone demands house of an existing tenant. If at that point the existing te
already served then do not disturb the procedure. Otherwise modify the remain
the queue by inserting her at the top and proceed. Similarly, insert any existing
who is not already served at the top of the queue once her house is demanded. I
point a loop forms, it is formed by existing tenants and in such cases remove all a
in the loop by assigning them the houses they demand and proceed.

The key innovation in this mechanism is that an existing tenant whose current
is requested is upgraded to the top of the queue before her house is assigne
result it is individually rational as it assures every existing tenant a house tha
least as good as her own. In addition it is also Pareto efficient and strategy-
YRMH–IGYT algorithm reduces Gale’s top trading cycles algorithm for the spe
case of housing markets and following Abdulkadiroğlu and Sönmez (1999) we ref
above mechanism as thetop trading cyclesmechanism.

In this paper we show that there is an important relation between the two m
nisms described above:The core based mechanism is equivalent to an extreme case
top-trading cycles mechanism where newcomers are randomly ordered first and e
tenants are randomly ordered next. This result illustrates that there is a hidden bias in
core based mechanism. Recall that in that mechanism an initial allocation is construc
assigning each existing tenant her current house and randomly assigning vacant ho
newcomers. This might be interpreted as granting property rights of vacant houses t
comers. Therefore existing tenants who also have claims on vacant houses give u
claims under the core based mechanism. In that sense the bias in the core based me
is quite intuitive.

Our main result has an important corollary for the special case ofhouse allocation
problems(without existing tenants): The popular real-life mechanismrandom serial dic-
tatorshipis equivalent tocore from random endowments. (Here random serial dictatorsh
randomly orders the agents and assigns the first agent her top choice, the next agen
choice among remaining houses and so on whereas core from random endowme
domly chooses an initial allocation and chooses the core of the induced housing m
This equivalence result is originally shown by Abdulkadiroğlu and Sönmez (1998) and
provides important support for both mechanisms since the two key mechanisms for
allocation problems are equivalent. The policy implication of our paper is quite diffe
than that of Abdulkadirŏglu and Sönmez (1998). While core from random endowmen
a key mechanism for house allocation problems, its extension to house allocation pro
with existing tenants is extremely biased in favor of newcomers. In most real-life ap

tions the priority is intended for existing tenants and our result shows that the core based
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approach is not the best choice in such cases.3 Encouraged by Abdulkadiroğlu and Sönmez
(1998), one may be tempted to use the core based mechanism for house allocatio
lems with existing tenants. Our paper shows that this approach may produce an un
bias which can be avoided via the top trading cycles mechanism.

The rest of the paper is organized as follows: In Section 2 we formally introduc
model as well as the special case of housing markets and Gale’s top trading cycle
rithm. In Section 3 we introduce the two mechanisms studied in the paper and a
the dynamics of the YRMH–IGYT algorithm. In Section 4 we present our equivalenc
sult and its corollary in the context of house allocation problems. Finally in Section
conclude.

2. House allocation with existing tenants

A set of houses (or other indivisible goods) should be allocated to a set of agent
centralized clearing-house. Some of these agents are existing tenants each of whom
occupies a house, the rest of the agents are newcomers and there are houses w
vacant. Existing tenants are not only entitled to keep their current houses but also to
for other houses if they wish. The main real-life application we have in mind is on-ca
house allocation.

Formally, ahouse allocation problem with existing tenants(Abdulkadirŏglu and Sön-
mez, 1999) is a five-tuple〈AE,AN,HO,HV ,P 〉 whereAE = {a1, a2, . . . , an} is a finite set
of existing tenants,AN = {an+1, . . . , an+m} is a finite set of newcomers,HO = {ha}a∈AE

is a finite set of occupied houses,HV is a finite set of vacant houses, andP = (Pa)a∈AE∪AN

is a list of strict preference relations. LetA = AE ∪ AN denote the set of all agents a
H = HO ∪ HV denote the set of all houses. We assume that|H | = |A| = n + m and
thus|HV | = |AN | = m. Each agenta ∈ A has a strict preference relationPa on the set of
housesH . LetRa denote the “at-least-as-good-as” relation associated withPa . Preferences
are fixed throughout the paper.

A matchingµ is an assignment of houses to agents such that each agent is assign
house and each house is assigned to a different agent. Formally speaking a match
one-to-one mappingµ : A → H . For all a ∈ A, we referµ(a) as the assignment of age
a underµ. LetM be the set of all matchings. Note that|M| = (n + m)!.

A lottery is a probability distribution over all matchings. Let�M denote the set of a
lotteries. In order to simplify the exposition we abuse the notation and letµ also denote
the lottery that assigns probability 1 to matchingµ.

3 One could argue that the setup itself favors existing tenants since they each have a current house
could keep assuring a lower bound on their welfare and therefore it is only fair that the chosen mechanism

the newcomers for the vacant houses. In our view this normative issue shall be resolved by the central planner.
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2.1. Housing markets

The class ofhousing markets(Shapley and Scarf, 1974) is an important subclass of
model where there are only existing tenants and occupied houses.4 Formally a housing
market is a four-tuple〈A,H,P,µ〉 whereA is a finite set of agents,H is a finite set of
houses,P is a list of strict preference relations, andµ is a matching which specifies th
initial allocation. Throughout the paper we fixA, H andP so that each matchingµ defines
a housing market.

Given a housing marketµ, the coalitionT ⊆ A blocksa matchingη ∈M if there exists
a matchingν ∈M such that

(i) ν(a) ∈ {h ∈ H : h = µ(a′) for somea′ ∈ T } for all a ∈ T ,
(ii) ν(a)Raη(a) for all a ∈ T , and

(iii) ν(a)Paη(a) for somea ∈ T .

A matchingη is in thecoreof a housing marketµ if it is not blocked by any coalition.
The core plays the key role for housing markets. Roth and Postlewaite (1977) sho

there is a unique matching in the core of each housing market which also coincides w
unique competitive allocation. The core as a mechanism is strategy-proof (Roth, 198
it is the only mechanism that is Pareto efficient, individually rational and strategy-
(Ma, 1994).

2.2. Gale’s top trading cycles algorithm

Gale’s top trading cycles algorithm(GTTCA) is an iterative algorithm which is used
find the unique core allocation of a housing market. This algorithm is one of the tw
algorithms in this paper and it is defined as follows:

Round 1. Each agent points to the agent who owns her most preferred house. Sin
number of agents is finite, there is at least one cycle (acycleis either a singleton(a) who
points to herself or an ordered list(a1, . . . , ak) of agents wherea1 points toak , ak points
to ak−1, . . . , a2 points toa1). In each cycle corresponding trades are performed an
agents in a cycle are removed together with their assignments. (Note that all of the
assigned their most preferred houses.) If there are remaining agents then we proce
the next round.

In general,
Roundt . Each remaining agent points to the agent who owns her most preferred

among those remaining in the market. In each cycle corresponding trades are per
and all agents in a cycle are removed together with their assignments. If there are rem
agents then we proceed with the next round.

By the finiteness of agents, at least one cycle forms at each round so that the alg
terminates in at most|A| rounds.
4 See Moulin (1995) for an extensive analysis of housing markets.
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3. Matching and lottery mechanisms

A matching mechanismis a systematic procedure to select a matching for each h
allocation problem with existing tenants. Similarly alottery mechanismis a systematic
procedure to select a lottery for each problem.

3.1. Core based mechanisms

Let M∗ = {µ ∈ M: µ(a) = ha for all a ∈ AE} be the set of matchings which assi
each existing tenant her current house. Note that|M∗| = m!. For givenA, H and for
eachµ ∈ M∗ define mechanismϕµ as follows: For any preference profile mechanismϕµ

interpretsµ as the initial allocation and chooses the core of the induced housing m
Since the preferences are fixed throughout the paper, we denote the outcome of mec
ϕµ also withϕµ dropping the argument inϕµ(P ).

Since core is the key mechanism for housing markets, it is natural to consider th
lowing lottery mechanism for house allocation problems with existing tenants:

(1) For each problem, first construct an initial endowment by (i) assigning each ex
tenant her current house and (ii) randomly assigning vacant house to newcome
uniform distribution, and

(2) next choose the core of the induced housing market as the final outcome.

Let us refer this mechanism as mechanismΦ. Formally,

Φ =
∑

µ∈M∗

1

m!ϕ
µ.

3.2. Mechanisms through a direct approach

Let f : {1, . . . , n + m} → A be a bijection andF be the class of all such bijection
We refer each such bijection as anordering of agents and denote it as the ordered
(f (1), f (2), . . . , f (n + m)). For any orderingf ∈ F , its inversef −1(.) is defined as
f −1(a) = i if and only if f (i) = a. For eachA∗ ⊂ A, a bijectionf : {1, . . . , |A∗|} → A∗
is referred as asub-order. Here agentf (1) is theheadand agentf (|A∗|) is thetail of the
sub-orderf .

For a given orderingf ∈ F consider the following “you request my house—I get yo
turn (YRMH–IGYT)” algorithm (Abdulkadirŏglu and Sönmez, 1999): For any given o
deringf , assign the first agent her top choice, the second agent her top choice amo
remaining houses, and so on, until an agenta demands househa′ of an existing tenanta′.
If at that point existing tenanta′ is already served then do not disturb the procedure.
erwise, modify the queue by inserting existing tenanta′ to the top so that existing tenanta′
is at the top of the line, agenta is second in the line and the rest of the line is uninterrup
Next it is the turn of existing tenanta′ and there are three possibilities:

(1) Existing tenanta′ demands her own househa′ : In this case existing tenanta′ is as-

signed her own househa′ ; next, once again, it is the turn of agenta and she demands
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her top choice among the remaining houses and the procedure continues in a
way.

(2) Existing tenanta′ demands an available househ that is either vacant or that used
be the house of an existing tenant who is already assigned another house: In th
existing tenanta′ is assigned the available househ, agenta is assigned househa′ , and
the procedure continues with the next agent in line.

(3) Existing tenanta′ demands househa′′ of another existing tenanta′′ who is still in the
line: In this case modify the queue by inserting existing tenanta′′ at the top so tha
existing tenanta′′ is at the top of the line, existing tenanta′ is second in the line, agen
a is third in the line and the rest of the line is uninterrupted. Next it is the tur
existing tenanta′′ and the procedure continues in a similar way.

As we proceed, existing tenants may form loop-orders. (Aloop-order is either a sin-
gleton(a) who demands her own house or an ordered list(a1, . . . , ak) of existing tenants
where agenta1 demands the house of agentak , agentak demands the house of age
ak−1, . . . , agenta2 demands the house of agenta1.) In such cases, remove all agents in
loop-order by assigning them the houses they demand and proceed.

For any orderingf ∈ F , let ψf denote the induced matching mechanism thro
YRMH–IGYT algorithm. Following Abdulkadirŏglu and Sönmez (1999), we refer th
mechanism as thetop trading cycles mechanism. Since the preferences are fixed, we
note the outcome of YRMH–IGYT algorithm also withψf dropping the argument i
ψf (P ). In this paper we are particularly interested in orderings which place existing
ants at the end of the line giving priority to newcomers. DefineF̃ = {f ∈ F : f −1(a) <

f −1(a′) for all a ∈ AN anda′ ∈ AE}. Note that|F̃ | = n!m!. Define mechanismΨ as

Ψ =
∑
f ∈F̃

1

m!n!ψ
f .

That is, an orderingf among those which give priority to newcomers is randomly cho
with uniform distribution and next the outcome is obtained using YRMH–IGYT algorit

3.3. Dynamics of YRMH–IGYT algorithm

Since YRMH–IGYT algorithm is key to this paper, it is crucial to understand ho
works. For a given orderingf , theserial-dictatorshipinduced byf allocates the house
as follows: The first agent receives her top choice, the next agent receives her top
among the remaining houses and so on. For a given orderingf ∈ F , construct theeffective-
order ef ∈F as follows: Run YRMH–IGYT algorithm and order agents in the same o
their assignments are finalized. When there is a loop-order, order these agents a
loop-order.

We illustrate the construction ofef with the following example. Later on we use t
same example to illustrate other constructions that are crucial to this paper. Examp
rather involved in order to capture every key aspect of these constructions.

Example 1. LetAE = {a1, a2, a3, a4, a5, a6, a7, a8, a9} be the set of existing tenants,AN =

{a10, a11, a12, a13, a14, a15, a16} be the set of newcomers,H0 = {h1, h2, h3, h4, h5, h6, h7,
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h8, h9} be the set of occupied houses, andHV = {h10, h11, h12, h13, h14, h15, h16} be the
set of vacant houses. (Herehi is the current house of existing tenantai for i � 9.) Let the
preference profileP be given as:5

AE AN︷ ︸︸ ︷
a1 a2 a3 a4 a5 a6 a7 a8 a9

h15 h3 h1 h2 h9 h6 h6 h6 h11
... h4 h3

...
...

... h7 h12
...

...
...

...
...

︷ ︸︸ ︷
a10 a11 a12 a13 a14 a15 a16

h7 h2 h4 h6 h8 h1 h5

h3 h4 h14 h13
...

...
...

h12 h16
...

...

h10
...

...

Let f = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9) be the order-
ing of the agents. Figures 1 through 3 illustrate the dynamics of the YRMH–IGYT
gorithm. When an agent’s assignment underψf is finalized, that is indicated with thic
arrows and reported at the right end of the figure. The effective-orderef orders the agent
in the same order as their assignments are finalized.

In this example agents’ assignments are finalized in the following order:

ef = (a6, a13, a1, a15, a3, a4, a2, a11, a8, a14, a12, a9, a5, a16, a7, a10).

The outcome of the algorithm is

ψf =
(

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

h15 h4 h3 h2 h9 h6 h7 h12 h11 h10 h16 h14 h13 h8 h1 h5

)
.

Recall that only existing tenants are inserted to the top of the line in the YRMH–I
algorithm. Therefore the relative order of newcomers in an orderingf and its effective-
orderef are the same.

Observation 1. For all f ∈ F anda, a′ ∈ AN we havef −1(a) < f −1(a′) ⇐⇒ e−1
f (a) <

e−1
f (a′).

Next consider an orderingf ∈ F̃ . Here agentsf (1), . . . , f (m) are newcomers. Sinc
the relative order of newcomers are identical inf andef , the effective-orderef will order
agents as follows: Some existing tenants (possibly none) are followed byf (1), followed by
some existing tenants (possibly none), followed byf (2), . . . , followed byf (m), followed
by some existing tenants (possibly none).

Consider newcomerf (1) who is at the top of orderingf . If she is not at the top o
effective-orderef that means she requested the current house of an existing tenan
might have requested the current house of another existing tenant and so on. Inse
5 After the best few houses the rest of the preferences are arbitrary for each agent.
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Fig. 1. The sequence of first seven events under the YRMH–IGYT algorithm.

existing tenants will stop once any of these existing tenants (or the newcomerf (1) herself)
requests a vacant house. Therefore one and only one agent among newcomerf (1) and her

predecessors inef will be assigned a vacant house. Similarly for anyk � m, k agents will
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Fig. 2. The sequence of second seven events under the YRMH–IGYT algorithm.

be assigned vacant houses among newcomerf (k) and her predecessors inef . Hence we

have the following observation:
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Fig. 3. The sequence of last six events under the YRMH–IGYT algorithm.

Observation 2. Let f ∈ F̃ and consider the matchingψf . There is one and only one age
betweenef (1) andf (1) in effective-orderef who is assigned a vacant house. Similarly
eachk � m, there is one and only one agent between the immediate successor off (k − 1)

andf (k) in ef who is assigned a vacant house.

For eachf ∈ F̃ , YRMH–IGYT algorithm assigns houses in one of two possible wa

(1) There is a sub-order(a1, . . . , ak) of agents where
(a) ak is a newcomer,a1, . . . , ak−1 are existing tenants, and
(b) a1 receives a vacant house,a2 receivesa1’s house,. . . , ak receivesak−1’s house.

We call each such sub-order aserial-order(S).
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(2) There is a sub-order(a1, . . . , ak) of existing tenants wherea1 receivesak ’s house,
ak receivesak−1’s house,. . . , a2 receivesa1’s house. Recall that we call each su
sub-order aloop-order(L).

Therefore effective-orderef is a sequenceL, . . . ,L,S1,L, . . . ,L,S2, . . . ,L,Sm,

L, . . . ,L of serial-orders and loop-orders where the tail of serial-orderSi is newcomer
f (i) for i � m.

Example 1 continued. Following the dynamics of YRMH–IGYT algorithm in Example
effective-orderef is the following sequence of loop-orders and serial-orders.

(a6)︸︷︷︸
L1

, (a13)︸︷︷︸
S1

, (a1, a15)︸ ︷︷ ︸
S2

, (a3)︸︷︷︸
L2

, (a4, a2)︸ ︷︷ ︸
L3

, (a11)︸︷︷︸
S3

, (a8, a14)︸ ︷︷ ︸
S4

, (a12)︸︷︷︸
S5

, (a9, a5, a16)︸ ︷︷ ︸
S6

, (a7)︸︷︷︸
L4

, (a10)︸︷︷︸
S7

.

3.4. A simplification of mechanismΨ

DefineF∗ = {f ∈ F̃ : a < a′ ⇒ f −1(a) < f −1(a′) for all a, a′ ∈ AE}. That is, order-
ings inF∗ not only order newcomers before existing tenants but also order existing te
based on their index. Note that|F∗| = m!. The following lemma states that the outcom
of YRMH–IGYT algorithm is identical for two orderings iñF as long as newcomers a
ordered in the same way under both orderings.

Lemma 1. Letf,g ∈ F̃ be such thatf (i) = g(i) for all i � m. Thenψf = ψg .

Proof. Let f,g ∈ F̃ be such thatf (i) = g(i) for all i � m. Sincef (i) = g(i) for all i � m,
YRMH–IGYT algorithm works identical for both orderings until newcomerf (m) (i.e. the
last newcomer) is assigned a house. Therefore for eachi � m, agentf (i) is assigned the
same house underψf andψg . Next consider the rest of the agents each of whom i
existing tenant. YRMH–IGYT algorithm is equivalent to GTTCA when there are o
existing tenants (Abdulkadiroğlu and Sönmez, 1999) and therefore each of the rema
agents receive the unique core assignment of the remaining market under either or
Henceψf = ψg . �

Using Lemma 1 we can obtain the following simpler expression for mechanismΨ :

Ψ =
∑

f ∈F∗

1

m!ψ
f .

That is, first randomly order the newcomers with uniform distribution, next order th
isting tenants based on their index and finally obtain the outcome using YRMH–I
algorithm.

4. Main result

Our main contribution is that the two lottery mechanismsΦ and Ψ are equivalent

Recall that both mechanisms select a uniform lottery overm! matchings for each problem.
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Here is our proof strategy: For each orderingf ∈ F∗ we construct a matchingη(f ) ∈
M∗ such thatψf = ϕη(f ). Next we show that mappingη :F∗ → M∗ is a bijection by
constructing its inverse mapping. Therefore mappingη is such thatf 
= g ⇔ η(f ) 
= η(g)

for all f,g ∈F∗ and this in turn implies thatΦ = Ψ .

4.1. Construction of mappingη

Construction of mappingη :F∗ → M∗ is quite involved and it requires additional n
tation. The key challenge in this construction is finding a mapping which is a bijection
one-to-one and onto). Otherwise it would be a straightforward task to construct a ma
ν :F∗ → M∗ such thatψf = ϕν(f ) for eachf ∈ F∗. For example one such mappingν

can be constructed by simply

(1) finding the effective order, loop-orders, serial-orders; and
(2) assigning each agent at the tail of a serial-order (who is by definition a newcome

vacant house which is allocated in the same serial-order.

When we run GTTCA with this initial endowment, each of the loop-orders and
serial-orders obtained in the YRMH–IGYT algorithm will form as a cycle, and hence
same outcome will be obtained by the two algorithms. However the mappingν is not
one-to-one and thus two distinct orderingsf , g may yield the same initial endowme
ν(f ) = ν(g). We illustrate this point with our running example.

Example 1 continued. Recall that for ordering

f = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9),

the effective-orderef is the following sequence of loop-orders and serial-orders:

(a6)︸︷︷︸
L1

, (a13)︸︷︷︸
S1

, (a1, a15)︸ ︷︷ ︸
S2

, (a3)︸︷︷︸
L2

, (a4, a2)︸ ︷︷ ︸
L3

, (a11)︸︷︷︸
S3

, (a8, a14)︸ ︷︷ ︸
S4

, (a12)︸︷︷︸
S5

, (a9, a5, a16)︸ ︷︷ ︸
S6

, (a7)︸︷︷︸
L4

, (a10)︸︷︷︸
S7

.

Next consider the ordering

g = (a15, a13, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9)

which differs from orderingf in only the order of agentsa13 anda15. In this case the
effective ordereg is the following sequence of loop-orders and serial-orders

(a1, a15)︸ ︷︷ ︸
S2

, (a6)︸︷︷︸
L1

, (a13)︸︷︷︸
S1

, (a3)︸︷︷︸
L2

, (a4, a2)︸ ︷︷ ︸
L3

, (a11)︸︷︷︸
S3

, (a8, a14)︸ ︷︷ ︸
S4

, (a12)︸︷︷︸
S5

, (a9, a5, a16)︸ ︷︷ ︸
S6

, (a7)︸︷︷︸
L4

, (a10)︸︷︷︸
S7

which consists of the same loop-orders and same serial-orders as effective orderef , al-
though in a different sequence. Since the serial-orders are the same for the two e
orders, the above mentioned mappingν yields

ν(f ) = ν(g) =
(

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16
h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h16 h14 h13 h12 h15 h11

)

showing that mappingν is not one-to-one.
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We next proceed with additional notation needed for the construction of mappiη.
Recall that for eachf ∈ F∗ effective-orderef is a sequence of serial-orders and loo
ordersL, . . . ,L,S1,L, . . . ,L,S2, . . . ,L,Sm,L, . . . ,L. Moreover newcomerf (1) is the
tail of serial-orderS1, newcomerf (2) is the tail of serial-orderS2, . . . , newcomerf (m) is
the tail of serial-orderSm. We partition serial-orders and loop-orders of effective-ordeef

as follows:
Step 1. Starting with agentef (1) clear each agent in order until it is the turn of an ag

a for whom her assignmentψf (a) is worse than a house previously assigned to an a
in a serial-order. Terminate first step right after thelast serial-order beforeagenta. Next
proceed to step 2. If such an agent does not exist thenef consists of a single step.

In general,
Stept . Starting with the next agent clear agents one at a time until it is the turn

agenta for whom her assignmentψf (a) is worse than a house previously assigned to
agent in a serial-order of current stept . Terminate stept after thelast serial-order before
agenta. Next proceed to stept + 1. If such an agent does not exist thenef consists oft
steps.

Let ef consist ofT steps. For eacht � T , letS t denote the set of serial-orders ofef at
stept , Lt denote the set of loop-orders ofef at stept andAt

N denote the set of newcome
at stept . For eacht � T , let AS t denote the set of agents in serial-orders ofS t andALt

denote the set of agents in loop-orders ofLt . For eacht � T , let ψf (S t ) denote the set o
houses assigned to agents inAS t andψf (Lt ) denote the set of houses assigned to ag
in ALt . For any loop-orderL let ψf (L) denote the set of houses assigned to membe
L and for any serial-orderS let ψf (S) denote the set of houses assigned to membersS.

Now we iteratively construct setsG1, . . . ,GT of houses as follows: First consid
houses which are assigned to agents in serial-orders. For anyt � T , include inGt all
houses inψf (S t ). We may include additional houses toG1, . . . ,GT −1 as explained be
low.

Next consider houses which are assigned to agents in loop-orders. We skip loop
in L1. Start with the first loop-orderL in L2. If any agenta ∈ L prefers any of the curren
houses inG1 to her own assignmentψf (a) then enlargeG1 by including houses inψf (L).
If no such agent exists, do not changeG1 at this point. Similarly consider each loop-ord
one at a time in order. For any loop-order first determine which step ofef it belongs.
Suppose it is the turn of loop-orderL ∈ Lt . If any agenta in loop-orderL prefers any of
the current houses inGt−1 to her own assignmentψf (a) then enlargeGt−1 by including
houses inψf (L). If no such agent exists then check whether any agenta in loop-orderL
prefers any of the current houses inGt−2 to her own assignmentψf (a). If so then enlarge
Gt−2 by including houses inψf (L). If no such agent exists then check whether. . . . If no
such agent exists then check whether any agenta in loop-orderL prefers any of the curren
houses inG1 to her own assignmentψf (a). If so then enlargeG1 by including houses in
ψf (L). If no such agent exists then do not change any ofGt−1, . . . ,G1 at this point and
proceed with the next loop-order.6

6 Construction of setsG1, . . . ,GT makes it possible to “link” the newcomers in the same step so that

assignments are finalized simultaneously under the GTTCA. Moreover, the construction assures that newcomers
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Remark 1. Consider anyt ∈ {1, . . . , T }. Pick any loop-orderL in ef . We haveψf (L) ⊆
Gt if and only if (i) there exists an agenta in loop-orderL and a househ ∈ Gt such that
hPaψ

f (a), and (ii) for any agenta′ in loop-orderL, for any r ∈ {t + 1, . . . , T }, and for
anyh′ ∈ Gr we haveψf (a′)Pa′h′.

For t > 1, letS∗t ⊆ S t be the set of serial-orders at stept where at least one member
the serial-order prefers a house inGt−1 to her assignment underψf . That is,

S∗t = {
S ∈ S t : hPaψ

f (a) for some househ ∈ Gt−1 and

some agenta in serial-orderS
}
.

For eacht > 1, S∗t is non-empty by construction of stept of ef together with construction
of Gt−1. Finally for t > 1, let A∗t

N be the set of newcomers each of whom is the tail o
serial-order inS∗t .7

We are ready to construct mappingη :F∗ → M∗. For eachf ∈ F∗:

(1) Find effective-orderef . Find loop-orders, serial-orders and steps ofef as well as sets
{Gt }, {S∗t } and{A∗t

N }.
(2) For each existing tenanta ∈ AE , let η(f )(a) = ha . That is, each existing tenant

assigned her current house underη(f ).
(3) Next we handle newcomers in step 1 ofef . The number of vacant houses assigne

step 1 is equal to the number of newcomers at step 1. LetG1
V be the set of vacant hous

assigned at step 1 ofef . Assign the first newcomer inef the smallest indexed hous
in G1

V , the second newcomer inef the second smallest indexed house inG1
V , . . . , the

last newcomer in step 1 ofef the biggest indexed house inG1
V under matchingη(f ).

(4) Finally, we handle newcomers in stept of ef for t > 1.
Recall that (i) each newcomer at stept is the tail of a serial-order and (ii) in eac
serial-order only the head agent is assigned a vacant house. Newcomers inA∗t

N will be
treated differently than newcomers inAt

N \ A∗t
N .

(a) Newcomers inA∗t
N : Recall thatA∗t

N is the set of newcomers each of whom is
tail of a serial-order inS∗t . For each serial-orderS ∈ S∗t , find the vacant hous
that is assigned in thenextserial-order ofef unlessS is the last serial-order o
stept . If S ∈ S∗t is the last serial-order of stept then find the vacant house th
is assigned in thefirst serial-order of stept . Let G∗t

V be the resulting set of vaca
houses. Order newcomers inA∗t

N based on their order inef . Under matchingη(f )

in stept leave GTTCA before newcomers in steps for t < s. Therefore it will be possible to recover the relati
ordering of two newcomers in the original ordering used by the YRMH–IGYT algorithm, provided that th
newcomers belong to serial-orders of different steps.

7 As we have already indicated the construction of steps ofef and setsG1, . . . ,GT make it possible to recove
the relative ordering of two newcomers in different steps. Depending on which serial-orders join to form
in the GTTCA, recovering the relative ordering of some of the newcomers in the same cycle (who are nec
in the same step) will also be possible. However, this will not uniquely determine (1) the relative ordering o
comers in step 1, or (2) the relative ranking of newcomers inA∗t

N
for t > 1. In the construction of matchingη(f ),
the indices of these newcomers will be utilized for this purpose.
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the first newcomer inA∗t
N receives the smallest indexed house inG∗t

V , the second
newcomer inA∗t

N receives the second smallest indexed house inG∗t
V and so on.

(b) Newcomers inAt
N \ A∗t

N : Underη(f ) each such newcomer who is not the l
newcomer of stept receives the vacant house that is assigned in the next s
order. If the newcomer is the last newcomer of stept then she receives the vaca
house that is assigned in the first serial-order of stept .

As we already emphasized, the set of newcomersA∗t
N plays a key role in constructio

of matchingη(f ). Underη(f ) each agent in a serial-orderS ∈ S t is assigned a hous
h ∈ ψf (S t ). Moreover, when GTTCA is executed for housing marketη(f ),

(i) serial-orders inS t will form one or more cycles among themselves, and
(ii) each of these cycles will contain at least one newcomer inA∗t

N .

Here the second point ensures that each serial-order inS t becomes part of a cycle an
leaves the market after at least one of the serial orders inS t−1. In Section 4.2 we execut
GTTCA in such a way that cycles that include newcomers are removed from the m
simultaneously. That assures that agents inAS t−1 leave the market before agents inAS t

for any t > 1. This point is key for construction of inverse mappingg in Section 4.2.

Remark 2. Pick any t > 1. Execute GTTCA for housing marketη(f ) as explained in
Section 4.2. No agent inAS t leaves the market before each agent inAS t−1 does.

Next we illustrate partition ofef into its steps, construction of setsG1, . . . ,GT ,
S∗1, . . . ,S∗T , A∗1

N , . . . ,A∗T
N and construction of mappingη with our running example.

Example 1 continued. In order to constructη(f ) we first partitionef into its steps. Clea
each agent one at a time following the order inef . We can skip the agents until the e
of the first serial-orderS1. Consider agenta1. We haveψf (a1) = h15 which is the top
choice of agenta1. So skip to agenta15. We haveψf (a15) = h1 which is the top choice o
agenta15. So skip to agenta3. We have

ψf (a15)︸ ︷︷ ︸
=h1

Pa3 ψf (a3)︸ ︷︷ ︸
=h3

and moreover agenta15 is a member of serial-orderS2. Therefore step 1 ends right aft
the last serial-order before agenta3, namely serial-orderS2 = (a1, a15).

We can skip the agents until the end of the first serial-order of step 2. Consider aga8.
We haveψf (a8) = h12 and for agenta8 only househ6 is better. However househ6 is
assigned to agenta6 who is a member of a loop-order. So skip to agenta14. We have
ψf (a14) = h8 which is the top choice of agenta14. So skip to agenta12. We have
ψf (a12) = h14 and for agenta12 only househ4 is better. However househ4 is assigned
to agenta4 who is a member of a loop-order. So skip to agenta9. We haveψf (a9) = h11
which is the top choice of agenta9. So skip to agenta5. We haveψf (a5) = h9 which is
the top choice of agenta5. So skip to agenta16. We haveψf (a16) = h5 which is the top

choice of agenta16. So skip to agenta7. We haveψf (a7) = h7 and for agenta7 only house
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h6 is better. However househ6 is assigned to agenta6 who is a member of a loop-orde
So skip to agenta10. We have

ψf (a8)︸ ︷︷ ︸
=h12

Pa10 ψf (a10)︸ ︷︷ ︸
=h10

and moreover agenta8 is a member of serial-orderS4 which is in step 2. Therefor
step 2 ends right after the last serial-order before agenta10, namely the serial-orde
S6 = (a9, a5, a16).

Agenta10 was the last agent inef so effective-orderef has 3 steps:

(a6)︸︷︷︸
L1

, (a13)︸︷︷︸
S1

, (a1, a15)︸ ︷︷ ︸
S2

Step 1

∣∣∣∣∣∣
(a3)︸︷︷︸
L2

, (a4, a2)︸ ︷︷ ︸
L3

, (a11)︸︷︷︸
S3

, (a8, a14)︸ ︷︷ ︸
S4

, (a12)︸︷︷︸
S5

, (a9, a5, a16)︸ ︷︷ ︸
S6

Step 2

∣∣∣∣∣∣
(a7)︸︷︷︸
L4

, (a10)︸︷︷︸
S7

Step 3
.

ThereforeA1
N = {a13, a15}, A2

N = {a11, a14, a12, a16} andA3
N = {a10}.

Next, we construct sets of housesG1, G2 andG3:
First consider houses that are assigned to members of serial-orders. Serial-or

step 1 areS1, S2 and houses assigned in these serial-orders areh13, h15, h1. Therefore
{h13, h15, h1} ⊆ G1. Serial-orders of step 2 areS3, S4, S5, S6 and houses assigned in the
serial-orders areh16, h12, h8, h14, h11, h9, h5. Therefore{h16, h12, h8, h14, h11, h9, h5} ⊆
G2. The only serial-order of step 3 isS7 and the only house that is assigned in that se
order ish10. Therefore{h10} ⊆ G3.

Next consider houses which are assigned to agents in loop-orders. Skip loop-orL1
which is in step 1. Consider loop-orderL2 = (a3) which is in step 2. We have

h1Pa3 ψf (a3)︸ ︷︷ ︸
=h3

and h1 ∈ G1.

Hence we include househ3 to G1 since it is the only house assigned in loop-orderL2.
Thus{h3} ⊆ G1. Next consider loop-orderL3 = (a4, a2) which is also in step 2. We have

h3Pa2 ψf (a2)︸ ︷︷ ︸
=h4

and h3 ∈ G1.

Hence we include housesh4, h2 to G1 since they are the houses assigned in loop-orderL3.
Thus{h4, h2} ⊆ G1. Finally consider loop-orderL4 = (a7) which is in step 3. There is n
househ ∈ G2 such that

hPa7 ψf (a7)︸ ︷︷ ︸
=h7

soh7 /∈ G2. There is no househ ∈ G1 such that

hPa7 ψf (a7)︸ ︷︷ ︸
=h7
soh7 /∈ G1 either.L4 is the last loop-order soG1, G2 andG3 are finalized as:
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G1 = {h13, h15, h1, h3, h2, h4}, G2 = {h16, h12, h8, h14, h11, h9, h5},
G3 = {h10}.

Next we construct setsS∗2 andS∗3 of serial-orders and setsA∗2
N , A∗3

N of newcomers.
We haveS∗2 = {S3, S5} since

• a11 is a member ofS3, h2 ∈ G1, h2Pa11 ψf (a11)︸ ︷︷ ︸
=h4

,

• a12 is a member ofS5, h4 ∈ G1, h4Pa12 ψf (a12)︸ ︷︷ ︸
=h2

, and

• no member ofS4 or S6 prefer any house inG1 to their assignment underψf .

We haveS∗3 = {S7} since

• a10 is a member ofS7, h12 ∈ G2, h12Pa10 ψf (a10)︸ ︷︷ ︸
=h10

.

ThereforeA∗2
N consists of the tails of serial-ordersS3, S5 andA∗3

N consists of the tail o
serial-orderS7. HenceA∗2

N = {a11, a12} andA∗3
N = {a10}.

We are ready to construct matchingη(f ):

(1) For each existing tenantaj ∈ AE we haveη(f )(aj ) = hj . That is,η(f )(aj ) = hj for
j � 9.

(2) Next consider the following newcomers:
(a) Newcomers in step 1 ofef :

G1
V = {h13, h15} is the set of vacant houses assigned at step 1 andA1

N = {a13, a15}.
Sincea13 is ordered beforea15 in ef , newcomera13 is assigned the smaller in
dexed house inG1

V anda15 is assigned the bigger indexed house inG1
V under

η(f ). Thereforeη(f )(a13) = h13 andη(f )(a15) = h15.
(b) Newcomers in step 2 ofef :

(i) Newcomers inA∗2
N = {a11, a12}:

The two serial-orders inS∗2 areS3 andS5. We haveG∗2
V = {h11, h12} because

• h12 is the vacant house that is assigned inS4 which is the next serial-orde
afterS3 and

• h11 is the vacant house that is assigned inS6 which is the next serial-orde
afterS5.

Sincea11 is ordered beforea12 in ef , newcomera11 is assigned the smalle
indexed house inG∗2

V anda12 is assigned the bigger indexed house inG∗2
V

underη(f ). Thereforeη(f )(a11) = h11 andη(f )(a12) = h12.
(ii) Newcomers inA2

N\A∗2
N = {a14, a16}:

Since newcomera14 is a member of serial-orderS4, her assignment unde
η(f ) is the vacant house that is assigned in the next serial-orderS5. Therefore
η(f )(a14) = h14. Newcomera16 is a member of serial-orderS6 which is the

last serial-order of step 2. Therefore her assignment underη(f ) is the vacant
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house that is assigned in the first serial-orderS3 of step 2. Henceη(f )(a16) =
h16.

(c) Newcomers in step 3 ofef :
(i) Newcomers inA∗3

N = {a10}:
The only vacant house that is assigned in step 3 ish10. ThereforeG∗3

V = {h10}
andη(f )(a10) = h10.

There are no remaining agents and therefore

η(f ) =
(

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

)
.

We next show that for anyf ∈ F∗, the outcome of the YRMH–IGYT algorithm is th
same as the core of the housing market induced by initial allocationη(f ).

Lemma 2. For anyf ∈F∗ we haveϕη(f ) = ψf .

Proof. Let f ∈ F∗. By definitionϕη(f ) is the core allocation of housing marketη(f ).
We first show thatϕη(f )(a) = ψf (a) for each agenta in the first step ofef . Once agents

in step 1 are handled, iteration of the same logic implies the desired conclusion. Let
of ef be in the following structure:L1

1,L
1
2, . . . ,L

1
�1

, S1
1,L1

�1+1, . . . ,L
1
�2

, S1
2, . . . ,L1

�k
, S1

k .
So there are�k loop-orders andk serial-orders in step 1 ofef . Recall that

(i) all agents in a loop-order are existing tenants,
(ii) every existing tenanta ∈ AE is assigned her current househa underη(f ), and

(iii) each agent in a loop-order receives her top choice among the houses those are a
to members of her loop-order.

Consider agents in loop-orderL1
1. By definition of a loop-order, each member ofL1

1 is
assigned the current house of a member of loop-orderL1

1 under matchingψf . Sinceef is
a serial-dictatorship and sinceL1

1 is a loop-order, each agent inL1
1 receives her top choic

among all houses underψf . Moreover, by construction each agent inL1
1 is assigned he

current house under matchingη(f ). Therefore each member ofL1
1 should be assigned he

top choice under matchingϕη(f ) or otherwise members ofL1
1 will block ϕη(f ) contradict-

ing ϕη(f ) is the core allocation for housing marketη(f ). Henceϕη(f )(a) = ψf (a) for each
agenta in loop-orderL1

1. Fix the assignments of these agents underϕη(f ).
Next consider agents in loop-orderL1

2. By definition of a loop-order each member
L1

2 is assigned the current house of a member of loop-orderL1
2 under matchingψf . Since

ef is a serial-dictatorship and sinceL1
2 is a loop-order, each agent inL1

2 receives her top
choice among all remaining houses (i.e. houses inH \ψf (L1

1)) underψf . By construction
each agent inL1

2 is assigned her current house underη(f ) and therefore under matchin
ϕη(f ) each member ofL1

2 should be assigned her top choice among all remaining ho
or otherwise members ofL1

2 will block ϕη(f ). Henceϕη(f )(a) = ψf (a) for each agenta

in loop-orderL1

2 as well. Proceeding in a similar way we shall haveϕη(f )(a) = ψf (a) for
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any agenta who is a member of a loop-order preceding serial-orderS1
1. Fix assignments

of these agents underϕη(f ) as well.
For the moment skip serial-orderS1

1 and proceed with the next loop-orderL1
�1+1. By de-

finition of a loop-order each member ofL1
�1+1 is assigned the current house of a mem

of loop-orderL1
�1+1 under matchingψf . By construction of the steps of effective-ord

ef , each agent inL1
�1+1 prefers her assignment underψf to each house inψf (S1

1).

This together withef being a serial-dictatorship andL1
�1+1 being a loop-order imply

that each agent inL1
�1+1 receives her top choice among all houses inH \ ⋃�1

r=1 ψf (L1
r )

(i.e. all houses whose recipients are not fixed so far underϕη(f )) under matchingψf .
By construction each agent inL1

�1+1 is assigned her current house underη(f ) and there-

fore underϕη(f ) each member ofL1
�1+1 should be assigned her top choice among

houses inH \ ⋃�1
r=1 ψf (L1

r ) or otherwise members ofL1
�1+1 will block ϕη(f ). Hence

ϕη(f )(a) = ψf (a) for each agenta in loop-orderL1
�1+1 as well. Fix the assignments

these agents as well underϕη(f ). Note that we are able to use the same argument a
fore once we observe that any member of a loop-order at step 1 prefers her assi
underψf to any house that is assigned to members of serial-orders at step 1 even
serial-order precedes the loop-order agent belongs. Proceeding in a similar way w
haveϕη(f )(a) = ψf (a) for any agenta who is a member of a loop-order at step 1. Fix
assignments of these agents underϕη(f ) as well.

Next considerall agents in serial-ordersS1
1, . . . , S1

k at step 1. By definition of a seria
order, under matchingψf each agent inAS1 is assigned either the current house of
existing tenant inAS1 or a vacant house (that is clearly assigned at step 1). By constru
of the steps ofef , each agent inAS1 prefers her assignment underψf to each of the house
in ψf (S1). This, together withef being a serial-dictatorship imply that each agent inAS1

receives her top choice among all houses inH \ ψf (L1) (i.e. all houses whose recipien
are not fixed so far underϕη(f ) under matchingψf ). By construction houses inψf (S1)

are given to members ofAS1 under matchingη(f ). In particular vacant houses are given
newcomers at step 1 and occupied houses are given to their current owners each o
is also inAS1. Therefore each agent inAS1 should receive her top choice inH \ ψf (L1)

underϕη(f ) or otherwise members ofAS1 will block. Henceϕη(f )(a) = ψf (a) for any
agenta ∈ AS1. Fix the assignments of these agents underϕη(f ) as well.

Onceϕη(f )(a) is fixed for any agenta in step 1, we can iterate the same arguments
handling the loop-orders first and all the serial-orders next) for agents in step 2 ofef and
so on. This completes the proof of Lemma 2.�

Corollary 1. Let f ∈ F∗ and letL be any loop-order ofef . Loop orderL forms a cycle
via GTTCA for housing marketη(f ).
Proof. Directly follows from the proof of Lemma 2. �
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4.2. Construction of inverse mappingg

Let µ ∈ M∗. Execute GTTCA. Note that it does not matter in what order cycles
removed from the market. That is because any cycle remains a cycle as long as its
bers are in the market. We first iteratively construct setsH 1, . . . ,HU of houses and set
C1, . . . ,CU of cycles as follows:

(1) Remove any cycle that exclusively consists of existing tenants. In the proces
cycles may form. Remove any new cycle that exclusively consists of existing te
as well. Proceed until each remaining cycle contains at least one newcomer.

(2) (a) Remove all remaining cycles (each of which contains at least one newcomsi-
multaneously. Let C1 be the set of these cycles. Order the agents in these c
so that the last agent in each cycle is a newcomer.8 Start constructingH 1 by in-
cluding all houses that are assigned to members of cycles inC1. At this point new
cycles that include newcomers may form. Do not remove them yet.

(b) Remove any newly formed cycle that exclusively consists of existing tenant
clude inH 1 all houses that are assigned to members of these cycles. Procee
each remaining cycle contains at least one newcomer.

In general,

(t) (a) Remove all remaining cycles (each of which contains at least one newcomsi-
multaneously. Let Ct−1 be the set of these cycles. Order agents in these cycl
that the last agent in each cycle is a newcomer. Start constructingHt−1 by includ-
ing all houses that are assigned to members of cycles inCt−1. At this point new
cycles that include newcomers may form. Do not remove them yet.

(b) Remove any newly formed cycle that exclusively consists of existing tenant
clude inHt−1 all houses that are assigned to members of these cycles. Pr
until each remaining cycle contains at least one newcomer.

The process ends when no agent remains. For eacht � U , let ACt denote the set o
agents in cycles ofCt and letϕµ(Ct ) denote the set of houses assigned to members ofACt .
For any cycleC let ϕµ(C) denote the set of houses assigned to members ofC.

Next construct sets̃A2
N, . . . , ÃU

N of newcomers as follows: For anyt > 1, consider
C ∈ Ct . By construction there is at least one newcomer in cycleC. A cycle with k new-
comers can be divided intok serial-orders where each serial-order starts with an agent
receives a vacant house underϕµ and ends with a newcomer. Let newcomera be a membe
of cycleC ∈ Ct . In order to determine whether newcomera belongsÃt

N

(i) divide cycleC into its serial orders,
(ii) find the serial-orderS newcomera belongs to, and

8 Note that cycle(a1, a2, a3, . . . , ak) is the same cycle with each of the following cycles:(a2, a3, . . . , ak, a1),

(a3, a4, . . . , ak, a1, a2), . . . , (ak, a1, a2, . . . , ak−1).
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(iii) check whether there exists any agenta′ in serial-orderS such thathPa′ϕµ(a′) for
someh ∈ Ht−1.

We havea ∈ Ãt
N if and only if such an agenta′ exists.

For anyt > 1, each cycleC ∈ Ct hosts a newcomer who is also a member ofÃt
N . Oth-

erwise cycleC could have been removed before. For notational convenience re-org
each cycleC ∈ Ct for any t > 1 so that the last member ofC belongs toÃt

N .
We are now ready to construct inverse mappingg :M∗ →F∗. For anyµ ∈M∗:

(1) Construct sets{Ct }, {Ht }, {Ãt
N }. Make sure that fort > 1 cycles are re-organized s

that the last agent in each cycleC ∈ Ct is a member of̃At
N .

(2) For anyt , order the newcomers inACt before the newcomers inACt+1.
(3) Order the newcomers inAC1 based on the index of their endowment inµ starting with

the agent who has the house with the smallest index.
(4) For any stept > 1 order the newcomers inACt as follows:

(a) First order the newcomers iñAt
N based on the index of their endowment inµ

starting with the agent who has the house with the smallest index. LetÃt
N =

{ãt
1, . . . , ã

t
�} and without loss of generality suppose houseµ(ãt

1) has the small-
est index, houseµ(ãt

2) has the second smallest index and so on so forth. Ther
we order agents iñAt

N as(ãt
1, . . . , ã

t
�) among themselves.

(b) In order to complete the sub-order we will insert the remaining newcomers inACt

between agents iñAt
N . The treatment for agent̃at

1 will be slightly different so
start with newcomer̃at

2. Find the cycle newcomer̃at
2 belongs. Find the close

newcomera′ who precedes newcomerãt
2 in the cycle. If a′ ∈ Ãt

N then she is
already handled and skip to agentãt

3. If a′ /∈ Ãt
N then order her right in front o

ãt
2 and find the closest newcomera′′ who precedes newcomera′ in the cycle. If

a′′ ∈ Ãt
N then she is already handled and skip to agentãt

3. If a′′ /∈ Ãt
N then order

her right in front of newcomera′ and proceed in a similar way until encounteri
a newcomer̃a ∈ Ãt

N . Newcomerã is already handled so skip to agentãt
3.

Repeat this procedure for each of the agentsãt
3, . . . , ã

t
�.

Finally consider newcomer̃at
1 and find the cycle she belongs. Find the clos

newcomera′ who precedes newcomerãt
1 in the cycle. If a′ ∈ Ãt

N then she is
already handled and terminate the procedure. Ifa′ /∈ Ãt

N then order her at th
very end of the sub-order (that orders newcomers inACt ) and find the closes
newcomera′′ who precedes newcomera′ in the cycle. Ifa′′ ∈ Ãt

N then she is
already handled and terminate the procedure. Ifa′ /∈ Ãt

N then order her right in
front of newcomera′ and proceed in a similar way until encountering a newco
ã ∈ Ãt

N . Newcomerã is already handled so terminate the procedure.
This orders newcomers inACt among themselves in a unique way.

(5) Order the existing tenants after newcomers based on their index starting with t
isting tenant with the smallest index.9

9 Abdulkadirŏglu and Sönmez (1998) study a special case of our model where there are no existing

For this case construction of mappingg simplifies as follows: (a) WhenAE = ∅, construction of sets of houses
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Next we illustrate construction of setsH 1, . . . ,HU , C1, . . . ,CU , Ã2
N, . . . , ÃU

N as well
as construction of mappingg with our running example.

Example 1 continued. Let

µ = η(f ) =
(

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

)
.

We first construct sets of houses{Ht } and sets of cycles{Ct } as we execute GTTCA. Th
execution of GTTCA is shown in Figs. 4 through 10. In these figures for each ma
cycles that shall be immediately removed is indicated with thick arrows and cycle
shall remain for the remaining market is indicated with light arrows.

There are two cycles(a1, a15) and(a6) for the initial market (see Fig. 4). Among th
two, the former hosts newcomera15 so remove only cycle(a6) and setϕµ(a6) = h6.

In the remaining market there are three cycles(a1, a15), (a13) and (a7) (see Fig. 5).
Among the three the first one hosts newcomera15 and second one hosts newcomera13 so
remove only cycle(a7) and setϕµ(a7) = h7.

No new cycle forms in the remaining market and each of the two present cycles h
newcomer (see Fig. 6). Remove both cycles(a1, a15) and(a13) from the market simultane
ously and letC1 be the set of these cycles. Setϕµ(a1) = h15, ϕµ(a15) = h1, ϕµ(a13) = h13
and include housesh15, h1, h13 in H 1. At this point we haveC1 = {(a1, a15), (a13)} and

Fig. 4. The first market obtained as GTTCA is executed.

H1, . . . ,HU simplifies considerably: HereHt is simply the set of houses that can be removed in Roundt of
GTTCA. (b) WhenAE = ∅, construction of sets of agents̃A2

N
, . . . , ÃU

N
also simplifies considerably:̃At

N
simply

consists of agents each of whom prefers some house inHt−1 to her assignment underϕµ. This is because eac
serial-order is a singleton for this case.

Mappingg reduces to an analogous mapping in Abdulkadiroğlu and Sönmez (1998) under these simplifi

tions.
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Fig. 5. The second market obtained as GTTCA is executed.

Fig. 6. The third market obtained as GTTCA is executed.

{h15, h1, h13} ⊆ H 1. Note that while setC1 is already determined, setH 1 may grow as we
proceed.

In the remaining market there is only one cycle(a3) and it does not host a newcom
(see Fig. 7). Remove it from the market, setϕµ(a3) = h3 and include househ3 in H 1. At

this point we have{h15, h1, h13, h3} ⊆ H 1.
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Fig. 7. The fourth market obtained as GTTCA is executed.

Fig. 8. The fifth market obtained as GTTCA is executed.

In the remaining market there is only one cycle(a2, a4) which exclusively consists o
existing tenants (see Fig. 8). Remove it from the market, setϕµ(a2) = h4, ϕµ(a4) = h2
and include housesh4, h2 in H 1. At this point we have{h15, h1, h13, h3, h4, h2} ⊆ H 1.

In the remaining market there are two cycles(a11, a9, a5, a16), (a12, a8, a14) each of
which includes a newcomer (see Fig. 9). Remove them from the market simultane
and letC2 be the set of these cycles. Setϕµ(a9) = h11, ϕµ(a5) = h9, ϕµ(a16) = h5,
ϕµ(a11) = h16, ϕµ(a8) = h12, ϕµ(a14) = h8, ϕµ(a12) = h14, and include housesh16, h11,
h9, h5, h12, h8, h14 in H 2. At this point we haveC2 = {(a11, a9, a5, a16), (a12, a8, a14)}

and{h16, h11, h9, h5, h12, h8, h14} ⊆ H 2.
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Fig. 9. The sixth market obtained as GTTCA is executed.

Fig. 10. The seventh market obtained as GTTCA is executed.

In the remaining market there is only one cycle(a10) which hosts newcomera10 (see
Fig. 10). Remove it from the market and letC3 = {(a10)}. Setϕµ(a10) = h10 and include
househ10 in H 3. Since there are no remaining agents we have

C1 = {
(a1, a15), (a13)

}
, C2 = {

(a11, a9, a5, a16), (a12, a8, a14)
}
,

C3 = {
(a10)

}
,

H 1 = {h15, h1, h13, h3, h4, h2}, H 2 = {h16, h11, h9, h5, h12, h8, h14},
H 3 = {h10}.

Next we find Ã2
N and Ã3

N . First consider cycle(a11, a9, a5, a16) ∈ C2 which can be
divided into two serial-ordersa11 and(a9, a5, a16). Agenta11, a member of serial-orde
(a11), prefersh2 ∈ H 1 to her assignmentϕµ(a11) = h16. Therefore the tail of this serial o
der, namely newcomera11, is a member of̃A2

N . No-one in serial-order(a9, a5, a16) prefers
a house inH 1 to her own assignment underϕµ. Therefore the tail of this serial-orde
namely newcomera16, is not a member of̃A2

N .
Next consider cycle(a12, a8, a14) ∈ C2 which can be divided into two serial-orders(a12)

and(a8, a14). Agenta12, a member of serial-order(a12), prefersh4 ∈ H 1 to her assignmen
ϕµ(a12) = h14. Therefore the tail of this serial order, namely newcomera12, is a member
of Ã2

N . No-one in serial-order(a8, a14) prefers a house inH 1 to her own assignment un
der ϕµ. Therefore the tail of this serial-order, namely newcomera14, is not a membe

of Ã2

N .
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Finally consider cycle(a10) ∈ C3. Agenta10, a member of serial-order(a10), prefers
h12 ∈ H 2 to her assignmentϕµ(a10) = h10. Therefore the tail of this serial order, name
newcomera10, is a member of̃A3

N . HenceÃ2 = {a11, a12} andÃ3 = {a10}.
We are now ready to construct orderingg(µ).

(1) We first reorganize cycle(a11, a9, a5, a16) as(a9, a5, a16, a11) and cycle(a12, a8, a14)

as(a8, a14, a12) so that the last agent in both cycles is a member ofÃ2
N .

(2) Newcomers inAC1 (i.e. agentsa15, a13) are ordered before newcomers inAC2 (i.e.
agentsa11, a16, a14, a12) who are ordered before the newcomer inAC3 (i.e agenta10).

(3) Underµ, newcomera13 has the smaller indexed househ13 and newcomera15 has the
bigger indexed househ15. Therefore newcomers inAC1 are ordered as(a13, a15).

(4) Among newcomers inAC2, first consider agentsa11, a12 who are members of̃A2
N .

Underµ, newcomera11 has the smaller indexed househ11 and newcomera12 has
the bigger indexed househ12. Therefore agents iñA2

N are ordered as(a11, a12). New-
comera12 belongs to cycle(a8, a14, a12). The closest newcomer that precedesa12
is newcomera14. Sincea14 /∈ Ã2

N , order her right in front of newcomera12. So far
agentsa11, a12, a14 are ordered as(a11, a14, a12). There is no other newcomer in c
cle (a8, a14, a12) so skip to newcomera11 who belongs to cycle(a9, a5, a16, a11). The
closest newcomer that precedesa11 is newcomera16. Sincea16 /∈ Ã2

N , order her at the
end of the sub-order that orders newcomers inAC2. That takes care of newcomers
AC2 and they are ordered as(a11, a14, a12, a16).
Sincea10 is the only newcomer inAC3, she is ordered last among the newcomers.

(5) Finally, we order existing tenants after the newcomers based on their index.

Therefore we haveg(µ) = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8,

a9). Note that, sinceµ = η(f ) we haveg(µ) = f .

4.3. g is inverse mapping ofη

We are going to show thatg(η(f )) = f via three lemmata. Letf ∈ F∗, and construc
ef , {S t }, {Lt }, {Gt }, {A∗t

N }, andη(f ). For matchingη(f ), construct{Ct }, {Ht }, {Ãt
N }, and

g(η(f )).

Lemma 3. For any t , each serial-orderS ∈ S t is part of a cycleC ∈ Ct . Conversely for
any t , any cycleC ∈ Ct can be reorganized asC = (S1, . . . , Sk) such thatSi ∈ S t for all
i ∈ {1, . . . , k}.

Proof. We are going to prove the lemma iteratively for eacht . Fix t . Some of the loop
orders in stept of ef may have already formed cycles and left the market via GTT
before agents in serial-orders ofS t−1. The remaining ones will form cycles by Corollary
and leave the market after agents in serial-orders ofS t−1 form one or more cycles and leav
the market. By Remark 2, serial-orders inS t will not leave the market via GTTCA befor
serial-orders inS t−1. Once all loop-orders in step t ofef leave the market, serial-orders
S t will form one or more cycles among themselves and leave the market via GTTCA

is because
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(i) by construction of stept of ef , for anya ∈ AS t and any house

h ∈ H
∖((⋃

r<t

ψf
(
Sr

)) ∪ ψf
(
Lt

))

we haveψf (a)Pah, and
(ii) by construction ofη(f ), for anya ∈ AS t we haveη(f )(a) = ψf (a′) for somea′ ∈

AS t .

Moreover, by Remark 2 no agent in
⋃

r>t ASr leaves the market before each agent inAS t

does. These together with construction ofCt complete the proof of Lemma 3.�
Corollary 2. Execute GTTCA for housing marketη(f ). Any cycle that exclusively consis
of existing tenants is a loop-order inef .

Proof. Each loop-order inef forms a cycle via GTTCA by Corollary 1. Each remaini
agent is a member of a serial-order ofef and by Lemma 3 she leaves the market toge
with all members of her serial-order (which includes a newcomer) as a part of a cyc
GTTCA. This implies the desired conclusion.�
Lemma 4. Ht = Gt for all t .

Proof. For eacht we haveψf (S t ) ⊆ Gt by construction ofGt . Similarly for eacht we
haveϕη(f )(Ct ) ⊆ Ht by construction ofHt . Moreover by Lemma 2 we haveϕη(f ) = ψf

and by Lemma 3 we haveACt = AS t for all t . Thereforeϕη(f )(Ct ) = ψf (S t ) for all t .

Claim 1. Gt ⊆ Ht for all t .

Proof of Claim 1. Fix t . We will show thatGt\ψf (S t ) ⊆ Ht . By construction ofGt , set
Gt\ψf (S t ) consists of houses allocated in loop-orders ofef each of which belongs to
steps > t . Consider each of these loop-orders following their order inef . Let L be the
first loop-order such thatψf (L) ⊆ Gt\ψf (S t ). By Corollary 1,L will form a cycle via
GTTCA and leave the market. By Remark 1(i), there exists a househ ∈ Gt and an agen
a in L such thathPaψ

f (a). SinceL is the first loop-order withψf (L) ⊆ Gt\ψf (S t ),
by construction ofGt we haveh ∈ ψf (S t ). Therefore since we haveACt = AS t as well
asϕη(f ) = ψf and since all cycles inCt leave the market simultaneously via GTTC
loop-orderL forms a cycle via GTTCA and leaves the marketafter each of the cycles in
Ct . Moreover by Remark 1(ii), any agenta′′ in L prefersψf (a′′) to any house inGs for
any s > t . This together withACs = ASs for all s andϕη(f ) = ψf imply thatL forms a
cycle via GTTCA and leaves the marketbeforeany cycle inCs for anys > t . Therefore by
construction ofHt we haveψf (L) ⊆ Ht . Next letL′ be the second loop-order inef such
thatψf (L′) ⊆ Gt\ψf (S t ). By Remark 1(i), there exists a househ′ ∈ Gt and an agenta′ in
L′ such thath′Pa′ψf (a′). By construction ofGt we haveh ∈ ψf (S t )∪ψf (L). Therefore
since we haveACt = AS t as well asϕη(f ) = ψf and sinceL leaves the market after a
cycles inCt all of which leave the market simultaneously, loop-orderL′ forms a cycle via

GTTCA and leaves the marketafter each of the cycles inCt . Moreover by Remark 1(ii),
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any agenta′′ in L′ prefersψf (a′′) to any house inGs for any s > t . This together with
ACs = ASs for all s andϕη(f ) = ψf imply thatL′ forms a cycle via GTTCA and leave
the market before any cycle inCs for anys > t . Therefore by construction ofHt we have
ψf (L′) ⊆ Ht . Following in a similar way we obtainGt\ψf (S t ) ⊆ Ht . Moreover, since
ψf (S t ) = ϕη(f )(Ct ) ⊆ Ht we haveGt ⊆ Ht , completing the proof of Claim 1. �
Claim 2. Ht ⊆ Gt for all t .

Proof of Claim 2. Fix t . We will show thatHt\ϕη(f )(Ct ) ⊆ Gt . By construction ofHt , the
setHt\ϕη(f )(Ct ) consists of the houses allocated to existing tenants who form cycle
GTTCA and leave the market after the cycles inCt and before the cycles inCt+1. Consider
each of these cycles one at a time following the order they leave the market via G
(and arbitrarily order the cycles which form simultaneously). LetC be the first such cycle
By Corollary 2,C is a loop-order inef . SinceC forms and leaves the market only aft
the cycles inCt , there exists an agenta in C and a househ ∈ ϕη(f )(Ct ) = ψf (S t ) ⊆ Gt

such thathPaϕ
η(f )(a). Moreover, sinceC forms and leaves the market before the cyc

in Ct+1, we haveϕη(f )(a′′)Pa′′h′′ for any agenta′′ in C and for any househ′′ ∈ Hs for any
s > t . Therefore sinceGs ⊆ Hs for all s by Claim 1, we haveϕη(f )(a′′)Pa′′h′′ for any agent
a′′ in C and any househ′′ ∈ Gs for anys > t . Hence by Remark 1 we haveϕη(f )(C) ⊆ Gt .
Next consider the second such cycleC′. By Corollary 2,C′ is a loop-order inef . Since
C′ forms and leaves the market only after the cycles inCt and not before cycleC, there
exists an agenta′ in C′ and a househ′ ∈ ϕη(f )(Ct )∪ϕη(f )(C) = ψf (S t )∪ϕη(f )(C) ⊆ Gt

such thath′Pa′ϕη(f )(a′). SinceC′ forms and leaves the market before the cycles inCt+1,
we haveϕη(f )(a′′)Pa′′h′′ for any agenta′′ in C′ and for any househ′′ ∈ Hs ⊇ Gs for
any s > t . Hence by Remark 1 we haveϕη(f )(C′) ⊆ Gt . Following in a similar way, we
obtainHt\ϕη(f )(Ct ) ⊆ Gt . Moreover, sinceϕη(f )(Ct ) = ψf (S t ) ⊆ Gt we haveHt ⊆ Gt ,
completing the proofs of Claim 2 and Lemma 4.� �

DefineH 1
V = H 1 ∩ HV . For eacht > 1 defineH̃ t

V = { h ∈ Ht ∩ HV : h = η(f )(a) for
some newcomera ∈ Ãt

N }.

Corollary 3. Ãt
N = A∗t

N andH̃ t
V =G∗t

V for any t > 1 .

Proof. Immediately follows from Lemmas 2–4 and construction of setsÃt
N , A∗t

N , H̃ t
V , G∗t

V

for any t . �
Lemma 5. g(η(f )) = f .

Proof. We will show that each agent’s order is the same underf andg(η(f )). We proceed
by induction.

(1) Leta ∈ A1
N = AS1 ∩ AN = AC1 ∩ AN be a newcomer withf (i) = a for some orderi.

By construction ofη(f ), houseη(f )(a) is the ith smallest indexed house inG1
V .
MoreoverH 1
V = G1

V by Lemma 4. Thereforeη(f )(a) is also theith smallest indexed
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house inH 1
V . Since mappingg orders newcomers inAC1 before other newcomers an

since this order is based on the index of their endowments underη(f ), agenta should
be orderedith by orderingg(η(f )) as well.

(2) Assume that for each stepr ∈ {2, . . . , t − 1} of ef and for any agenta ∈ Ar
N , agenta’s

order is the same underf andg(η(f )).
We will show that for eacha ∈ At

N = AS t ∩ AN = ACt ∩ AN , agenta’s order should
be same underf andg(η(f )).
Recall thatA∗t

N = Ãt
N by Corollary 3. First we show that agents inA∗t

N are ordered
the same among themselves underf andg(η(f )). Fix a∗ ∈ A∗t

N and let orderingf
order herith among agents inA∗t

N . By construction ofη(f ), houseη(f )(a∗) is the
ith smallest indexed house inG∗t

V . Moreover, by Corollary 3 we havẽHt
V = G∗t

V .
Therefore houseη(f )(a∗) is theith smallest indexed house iñHt

V . Since mappingg
orders newcomers iñAt

N based on the index of their endowments underη(f ), agent
a∗ should be orderedith among agents iñAt

N = A∗t
N by orderingg(η(f )) as well.

Next we show that the remaining newcomers inAt
N are ordered the same underf and

g(η(f )). We have two cases to consider:

Case 1: i > 1. Let newcomera∗∗ ∈ A∗t
N be such thata∗∗ is ordered(i − 1)th among

newcomers inA∗t
N underf as well asg(η(f )). Consider the newcomers who are

dered between newcomersa∗∗ anda∗ underf . First consider newcomera ∈ At
N\A∗t

N

who is ordered right beforea∗ underf . Let S∗ be the serial-order newcomera∗ be-
longs inef . By construction ofη(f ), houseη(f )(a) is the vacant house allocated
S∗ underψf and by Lemma 3 serial-orderS∗ is a part of a cycleC ∈ Ct . These to-
gether withϕη(f ) = ψf imply that newcomera also belongs to cycleC and she is
ordered right beforeS∗ in cycleC. Sincea ∈ At

N\A∗t
N = At

N\Ãt
N , she is also ordere

right before newcomera∗ underg(η(f )) by construction of mappingg. Next consider
newcomera′ ∈ At

N\A∗t
N who is ordered right before newcomera underf . Let S be

the serial-order newcomera belongs inef . By construction ofη(f ), houseη(f )(a′)
is the vacant house allocated inS underψf . Since newcomera belongs to cycleC,
serial-orderS is part of cycleC by Lemma 3. These together withϕη(f ) = ψf imply
that newcomera′ also belongs to cycleC and she is ordered right beforeS in cycleC.
Sincea′ ∈ At

N\A∗t
N = At

N\Ãt
N , she is ordered right before newcomera underg(η(f )).

Following in a similar way, we show that newcomers betweena∗∗ anda∗ underf are
ordered the same among themselves underf andg(η(f )).

Case 2: i = 1. By construction ofA∗t
N , newcomera∗ is ordered first among agents

At
N underf . Let S∗ be the serial order newcomera∗ belongs inef . Let newcomer

a∗∗ ∈ A∗t
N be the agent who is ordered last among newcomers inA∗t

N underf and
g(η(f )). Consider newcomers inAt

N who are ordered after newcomera∗∗ underf .
Let newcomera ∈ At

N\A∗t
N be the last agent underf among newcomers inAt

N . By
construction ofη(f ), houseη(f )(a) is the vacant house allocated inS∗ underψf and
by Lemma 3 serial-orderS∗ is a part of a cycleC ∈ Ct . These together withϕη(f ) =
ψf imply that newcomera also belongs to cycleC and she is ordered right beforeS∗
in cycleC. Sincea ∈ At

N\A∗t
N = At

N\Ãt
N , she is also ordered last among newcom

in At
N underg(η(f )) by construction of mappingg. Next consider newcomera′ ∈
At
N\A∗t

N who is ordered right before newcomera underf . Let S be the serial-order
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newcomera belongs inef . By construction ofη(f ), houseη(f )(a′) is the vacant
house allocated inS underψf . Since newcomera belongs to cycleC, serial-orderS
is part of cycleC by Lemma 3. These together withϕη(f ) = ψf imply that newcomer
a′ also belongs to cycleC and she is ordered right beforeS in cycle C. Sincea′ ∈
At

N\A∗t
N = At

N\Ãt
N , she is ordered right before newcomera underg(η(f )) as well.

Following in a similar way we show that newcomers aftera∗∗ in step t of ef are
ordered the same among themselves underf andg(η(f )).
This covers all newcomers inAt

N and shows that they are ordered the same undf

andg(η(f )).

This shows that newcomers are ordered the same underf andg(η(f )). Finally existing
tenants are ordered after the newcomers based on their index under bothf andg(η(f )).
This concludes the proof of Lemma 5.�
4.4. Proof of the main result

We are now ready to prove our main result.

Theorem 1. Lottery mechanismsΦ andΨ are equivalent.

Proof. We have

Φ =
∑

µ∈M∗

1

m!ϕ
µ and Ψ =

∑
f ∈F∗

1

m!ψ
f .

Both mechanisms select a uniform lottery overm! matchings for each problem. Fix a pro
lem. For each orderingf ∈ F∗ construct matchingη(f ) ∈ M∗. By Lemma 2 we have
ψf = ϕη(f ), and by Lemma 5 mappingη is invertible. HenceΦ = Ψ . �
4.5. Implications for the house allocation problems

A house allocation problem(Hylland and Zeckhauser, 1977) is a special case of
model where there are only newcomers and vacant houses.10 A popular real-life mecha
nism in this context israndom serial-dictatorship:Randomly order the agents and ass
the first agent her top choice, the second agent her top choice among the remaining
and so on. Another natural mechanism iscore from random endowments:Randomly al-
locate the houses to agents, interpret it as an initial endowment, and choose the c
equivalently competitive allocation) of the induced housing market. Abdulkadiroğlu and
Sönmez (1998) show that the two mechanisms are equivalent and we obtain their re
an immediate corollary to Theorem 1.

10 See also Abdulkadirŏglu and Sönmez (1998, 2003), Bogomolnaia and Moulin (2001), Chambers (2
Ehlers (2002), Ehlers and Klaus (2003a, 2003b), Ehlers Klaus and Papai (2002), Ergin (2000, 2002),
(2003a, 2003b), Miyagawa (2001, 2002), Papai (2000), Schummer (2000), Svensson (1999, 1994) a

(1990).
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Corollary 4. The random serial dictatorship is equivalent to core from random end
ments for house allocation problems.

Proof. YRMH–IGYT algorithm reduces to a serial-dictatorship when there are no exi
tenants. This together with Theorem 1 imply the desired result.�

5. Conclusion

In this paper we show that there is an important relation between two intuitive h
allocation mechanisms which are designed to avoid inefficiencies in those situations
there are existing tenants and newcomers. Since the core (or equivalently the com
mechanism) is the undisputed mechanism in the context of housing markets, it is
ing to extend this mechanism via constructing an initial allocation by assigning ex
tenants their current houses and randomly assigning vacant houses to newcomer
ever this extended mechanism grants initial property rights of vacant houses to new
and therefore its equivalence to “newcomer favoring” top trading cycles algorithm is
intuitive. We believe our result provides additional support for the top trading cycles m
anism by showing that its main competitor is a very biased special case.
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