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Abstract

Many school districts in the U.S. use a student assignment mechanism that we refer to as the

Boston mechanism. Under this mechanism, a student loses his priority at a school unless his parents

rank it as their first choice. Therefore, parents are given incentives to rank high on their list the

schools where the student has a good chance of getting in. We characterize the Nash equilibria of the

induced preference revelation game. An important policy implication of our result is that a transition

from the Boston mechanism to the student-optimal stable mechanism would lead to unambiguous

efficiency gains.
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1. Introduction

In the U.S., many school choice programs that assign children to public schools rely

on the centralized student assignment mechanism that is currently used in Boston. Other

major school districts that use versions of this mechanism include Cambridge, Charlotte,
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Denver, Minnesota, Seattle and St. Petersburg-Tampa. Under the Boston mechanism, a

student who is not assigned to his top ranked school A is considered for his second

choice B only after the students who have top ranked B. Therefore, a student loses his

priority at a school unless his family ranks it as their first choice. In particular, it is

typically not in the best interest of parents to reveal their true preferences.1 Such

preference manipulation is often advocated in local press. Consider the following

statement from the Seattle Press2:
1 Ch

prefere

among
2 Ch

www.s
The method the school district uses to sort the school choice requests gives first

priority to students who are already enrolled at that school. Next in line come those

students with siblings at the school. Both of these factors are beyond your control.

These students are sure things. Enrollment at these schools is theirs for the asking.

No amount of strategizing, short of polling all existing students to determine how

many have younger siblings about to enter the school, can help you here. Third in

line, and the first effect of any real choice, are those students who live in the school’s

reference area. This is why you have such an excellent chance of getting into your

reference school if you make it your top choice. Choosing another neighborhood’s

reference school, however, puts a lot of kids in line ahead of yours. That reduces

your chances of getting in, particularly if the school has small classes.
To see how such preference misrepresentation may lead to an efficiency loss, consider

three schools A, B and C each having 100 students in its reference area and a class size

100. Let us assume for simplicity that the only priority taken into account is proximity, that

is, students in a given school’s reference area are given priority for that school; and a

lottery number is used to break ties. Suppose that school C is the least desired school from

the perspective of every family and in each reference area, 50 families prefer A over B and

the other 50 prefer B over A.

Consider a student i from the reference area A whose parents prefer school B to school

A. If they rank B as their first choice, then she loses her priority at A; hence, it becomes

difficult for i to get a seat at her reference area school A if she cannot get a seat at school B.

Hence, by top ranking their true favorite B, i’s parents risk their child to be assigned to

their least preferred school C. Alternatively, i’s parents may adopt the safer strategy and

ensure i a seat at school A by ranking A as their first choice.

As more students from the B area submit B as their first choice, it becomes more

difficult for i to get a seat at B when her parents rank B as their first choice; hence, the

safer strategy becomes more attractive. The situation is completely symmetric for a student

j from the reference area B whose parents prefer school A to school B. The safer strategy

for j’s parents is to rank B as their top choice, and this strategy becomes more attractive as

more students from the A area top rank A. As a result, it is an equilibrium under the Boston

mechanism for each family to play their safe strategy and top rank the school in their
en and Sönmez (in press) report an experiment in which about 80% of the subjects misrepresent their

nces under the Boston mechanism. In their experimental setting, the misrepresentation rate increases

subjects who think there will be stiff competition for their first choice.

arles Mas, Navigating the School Choice Maze, The Seattle Press, December 30, 1998, http://

eattlepress.com/article-483.html, accessed 02/10/2004.
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reference area.3 Under this equilibrium, every student is assigned to his/her reference area

school. Note that it is feasible under the given level of resources, to assign all the students

from the reference area of A who prefer B to A, to school B, and all the students from the

reference area of B who prefer A to B, to school A. Such a reallocation of seats would

improve the welfare of 100 families without affecting the others, illustrating the aggregate

efficiency loss under the Boston mechanism.

In this paper, we characterize the extent of the efficiency loss suggested by the above

example and identify the part of the inefficiency that can be recovered without violating

the priorities. To understand how families choose to distort their rankings in equilibrium,

we will identify the Nash equilibria of the preference revelation game induced by the

Boston mechanism. In order to describe the set of Nash equilibrium outcomes, we shall

connect school choice with an important model, which has played a prominent role in the

mechanism design literature. The school choice model (Abdulkadiroǧlu and Sönmez,

2003) is closely related to the well-known two-sided matching markets (Gale and Shapley,

1962). The key difference between the two models is that in the former schools are

indivisible objects which shall be assigned to students based on student preferences and

school priorities, whereas in the latter parties in both sides of the market are agents who

have preferences over the other side and whose welfare are taken into consideration. While

school priorities are determined by the school district based on state/local laws (and/or

education policies) and do not necessarily represent school tastes, one can formally treat

school priorities as school preferences and hence obtain a two-sided matching market for

each school choice problem (see Abdulkadiroǧlu and Sönmez, 2003; Balinski and

Sönmez, 1999; Ergin, 2002). Consequently, concepts/findings in two-sided matching have

their counterparts in school choice.

The central notion in two-sided matching is stability. Importance of this concept does

not diminish in the context of school choice because if a matching is not stable then there

is a student–school pair (i, s) such that (1) student i prefers school s to his assignment and

(2) either school s has some empty seats or student i has higher priority than another

student who is assigned a seat at school s. In either case, student i can seek legal action

against the school district for not assigning him a seat at school s. It is well-known that

there exists a stable matching and furthermore there exists a stable matching, which is

preferred by any student to any other stable matching (Gale and Shapley, 1962). This

matching is known as the student-optimal stable matching and it has played a key role in

the re-design of U.S. hospital–intern market in 1998 (see Roth, 2002; Roth and Peranson,

1999). The student-optimal stable matching can be obtained in several steps with the

following student-proposing deferred acceptance algorithm: At Step 1, each student

bproposesQ to her first choice and each school tentatively assigns its seats to its proposers

one at a time in their priority order. Any remaining proposers are rejected at the end of

Step 1. In each of the following steps, (a) each student who was rejected in the previous

step proposes to her next choice if one remains and (b) each school considers the students

it has been holding together with its new proposers, tentatively assigns its seats to these

students one at a time in priority order and rejects the remaining proposers. The algorithm
3 This is one of many equilibria.
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terminates when no student proposal is rejected, and each student is assigned her final

tentative assignment. Besides the fact that it is the most efficient stable mechanism,

another desirable feature of the student-optimal stable mechanism is that under this

mechanism it is a dominant strategy for student families to state their true rankings of the

schools (Dubins and Freedman, 1981; Roth, 1982).

While the student-optimal stable mechanism is well analyzed, not much is known about

the Boston mechanism despite its widespread use at many school districts. In our main

result, we describe the Nash equilibrium outcomes of the preference revelation game

induced by the Boston mechanism: The set of Nash equilibrium outcomes is equal to the

set of stable matchings under the true preferences. This result allows us to make welfare

comparison between the student-optimal stable mechanism and the Boston mechanism:

The preference revelation game induced by the student-optimal stable mechanism has a

dominant strategy equilibrium (which is truthful-revelation) and its outcome is either equal

to or Pareto dominates the Nash equilibrium outcomes of the Boston mechanism. In that

sense, the outcome of the student-optimal stable mechanism is the best one can hope for

under the Boston mechanism. An important policy implication is that a transition to

student-optimal stable mechanism may result in significant efficiency gains in Boston,

Cambridge, Charlotte, Denver, Minneapolis, Seattle, St. Petersburg-Tampa and other

districts, which rely on variants of the Boston mechanism.4 Our main result is fairly robust

in a number of directions and our characterization extends:

1. to the case with strategic schools when Nash equilibria in undominated strategies is

considered,

2. to the case where there are capacity constraints on various types of students and

3. to the more general class of priority matching mechanisms (Roth, 1991) when students

are allowed to veto any subset of schools.

In addition to its policy implications, our paper also contributes to the theory of

implementation in matching markets.5 There are a number of papers that analyze equilibria

induced by various mechanisms in the context of marriage problems (i.e. two-sided

matching markets where each agent has only one slot). One important negative result in

this context is that preference revelation games induced by stable mechanisms may have

Nash equilibria with unstable outcomes (Alcalde, 1996), and indeed given any Pareto

efficient and individually rational mechanism the set of Nash equilibrium outcomes of the

induced preference revelation game is the set of individually rational matchings (Sönmez,

1997). If, however, one considers as the underlying equilibrium concept a refinement of

Nash equilibrium that allows pairs (one from each side of the market) to jointly deviate,
5 We can restate our result using implementation theory jargon as follows: The Boston mechanism implements

the stable correspondence in Nash equilibria.

4 After the first version of this paper was written, officials at the Boston Public Schools have authorized a study

concerning an empirical analysis of the Boston mechanism and a possible transition to the student-optimal stable

mechanism (Abdulkadiroǧlu et al., in press(b)). Roughly around the same time, New York City Department of

Education adopted a version of the student-optimal stable mechanism for the assignment of more than 90,000

eighth graders to public high schools (Abdulkadiroǧlu et al., in press(a)).
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then the set of equilibrium outcomes of these games is the set of stable matchings (Ma,

1995; Shin and Suh, 1996; Sönmez, 1997).6 Our main result shows that the negative result

mentioned above is avoided when only one side of the market is strategic: There exists a

Pareto efficient and individually rational mechanism (the Boston mechanism) where the

set of Nash equilibrium outcomes of the induced preference game is the set of stable

matchings.

The fact that student families have incentives to misrepresent their preferences under

the Boston mechanism was first brought into the attention of economists by

Abdulkadiroǧlu and Sönmez (2003). They also noted that the outcome of the Boston

mechanism may be unstable under the stated preferences and is therefore vulnerable to

legal action by unsatisfied students and their parents. Our result shows that, although the

Boston mechanism is not stable, its equilibrium outcomes are stable with respect to true

preferences. In particular, in equilibrium, no family can ensure their child a seat in a

more preferred school through legal action, hence do not have any incentives to initiate a

lawsuit.

The organization of the rest of the paper is as follows. In Section 2, we formally define

the school choice and the college admissions models. In Section 3, we describe the Boston

mechanism. In Section 4, we characterize the Nash equilibria under the Boston mechanism

and illustrate the resulting efficiency loss. In Sections 5–7, we show that our main result

can be generalized to cases where schools behave strategically, where there are controlled

choice constraints to prevent ethnic segregation, and to a general class of priority matching

mechanisms. In Section 8, we illustrate that our arguments do not extend when there is

incomplete information. In Section 9, we present our concluding remarks.
2. School choice and two-sided matching

In a school choice problem (Abdulkadiroǧlu and Sönmez, 2003), there are a number of

students each of whom should be assigned a seat at one of a number of schools. Each

student has strict preferences over all schools and each school has a strict priority ranking

of all students. Each school has a maximum capacity but there is no shortage of the total

number of seats.

Formally, a school choice problem consists of:

1. a set of students I ={i1, . . . ,in},
2. a set of schools S ={s1, . . . ,sm},
3. a capacity vector q =( qs1, . . . ,qsm),
4. a list of strict student preferences PI =(Pi1

, . . . ,Pin
) and

5. a list of strict school priorities f =( fs1, . . . , fsm).
6 See also Alcalde and Romero-Medina (2000), Kara and Sönmez (1996, 1997), Konishi and Ünver (in press),

Shinotsuka and Takamiya (2003), Sotomayor (2003), Tadenuma and Toda (1998) and Teo et al. (2001) for

additional results on implementation in two-sided matching markets, and Jackson (2001) for a recent and

comprehensive survey on implementation theory.
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Here sPisV means that student i strictly prefers school s to school sV, qs denotes the

capacity of school s where
P

saSqsz |I| and fs denotes the strict priority ordering of

students at school s.

The school choice problem is closely related to the well-known two-sided

matching markets (Gale and Shapley, 1962).7 Two-sided matching markets have been

extensively studied and successfully applied in the American and British entry-level labor

markets (see Roth, 1984a, 1991). The key difference between the two models is that in

school choice schools are bobjectsQ to be consumed by the students whereas in two-sided

matching participants in both sides of the market are agents who have preferences over the

other side. Formally, a two-sided matching market consists of 1–4 and 5V, where 1–4 are

exactly as in above and 5 is replaced by

5V. a list of strict school preferences PS =(Ps1
, . . . ,Psm

).

Here Ps denotes the strict preference relation of school s over all students.

The two-sided matching theory have immediate implications on school choice. That

is because school priorities in the context of school choice can be interpreted as school

preferences in the context of college admissions (see Abdulkadiroǧlu and Sönmez,

2003; Balinski and Sönmez, 1999; Ehlers and Klaus, in press; Ergin, 2002; Kesten,

2004).

The outcome of both school choice problems and two-sided matching markets is

known as a matching. Formally, a matching l: IYS is a function from the set of students

to the set of schools such that no school is assigned to more students than its capacity. Let

l(i) denote the assignment of student i under matching l. Note that l�1(s) is the set of

students each of whom is matched to school s under matching l.
In the two-sided matching context, a student–school pair (i, s) is said to block a

matching l if either (1) student i prefers school s to its assignment l(i) and school s has

empty seats under l, or (2) student i prefers school s to its assignment l(i) and school s

prefers student i to at least one of the students in l�1(s). A matching is stable if and

only if there is no student–school pair that blocks it. Stability has been central to the

two-sided matching literature. It is by now well known that not only the set of stable

matchings is non-empty for each two-sided matching market, but also there exists a

stable matching which is at least as good as any stable matching for any student (Gale

and Shapley, 1962). This matching is known as the student-optimal stable matching.

Given a school choice problem we refer to a matching as stable whenever it is stable for

the induced two-sided matching market that is obtained by interpreting school priorities as

school preferences. We refer to the mechanism that selects the student-optimal stable

matching for each school choice problem as the student-optimal stable mechanism. By

definition, the student-optimal stable mechanism always yields a matching that is at least

as good as any stable matching for any student. Moreover, it is strategy-proof, that is

truthful-preference revelation is always in students’ best interest (Dubins and Freedman,

1981; Roth, 1982).
7 Throughout the paper we consider the many-to-one version of two-sided matching markets. These problems

are also knows as college admissions problems.
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3. The Boston student assignment mechanism

A student assignment mechanism is a systematic procedure that selects a matching for

each school choice problem. The following mechanism is the most widely used student

assignment mechanism in real-life applications of school choice problems.8

The Boston mechanism: For each school, a strict priority ordering of students is

determined, each student submits a preference ranking of the schools, and the key phase is

the choice of a matching based on fixed priorities and submitted preferences.

Round 1: In Round 1, only the first choices of the students are considered. For each

school, consider the students who have listed it as their first choice and assign seats of the

school to these students one at a time following their priority order until either there are no

seats left or there is no student left who has listed it as his first choice.

In general, at Round k: Consider the remaining students. In Round k, only the kth

choices of these students are considered. For each school with still available seats,

consider the students who have listed it as their kth choice and assign the remaining seats

to these students one at a time following their priority order until either there are no seats

left or there is no student left who has listed it as his kth choice.

The procedure terminates when each student is assigned a seat at a school.

We next present a simple example which illustrates the working of the Boston

mechanism.

Example 1. Let I ={i1, i2, i3, i4, i5, i6} be the set of students, S ={a, b, c, d} be the set of

schools and q=(2, 2, 1, 1) be the school capacity vector. Student priorities at schools as

well as their preferences are as follows:

fa : i5 � i1 � i2 � i3 N
fb : i5 � i6 � i3 N
fc : i4 � i5 � i6 N
fd : i5 � i6 N

Pi1 : a N
Pi2 : a N
Pi3 : a� b N
Pi4 : c N
Pi5 : c� a� b� d

Pi6 : c� a� b� d

Round 1: Only the first choices of students are considered and those with higher

priorities are accommodated. Each of students i1 and i2 is assigned a seat at school a; i4
is assigned a seat at school c. At the end of Round 1, b has 2 and d has 1 seat available;

students i3, i5 and i6 are unassigned.

Round 2: Remaining students are considered for their second choices. There is no seat

left at school a so students i5, i6 will not be accommodated in this round (too bad for

student i5 who lost the highest priority at school a) and student i3 is assigned a seat at

school b. Therefore, at the end of Round 2, each of schools b and d has 1 seat available,

and students i5 and i6 are unassigned.
8 See Introducing the Boston Public Schools 2002, http://www.boston.k12.ma.us/teach/assign.asp, accessed

02/10/2004.

 http:\\www.boston.k12.ma.us\teach\assign.asp 
 http:\\www.boston.k12.ma.us\teach\assign.asp 
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Round 3: Remaining students are considered for their third choices and student i5 is

assigned a seat at school b. At the end of Round 3, school d has 1 seat available and

student i6 is unassigned.

Round 4: The only remaining student i6 is assigned a seat at his fourth choice school d.

Therefore, the outcome of the Boston mechanism is:

i1 i2 i3 i4 i5 i6
a a b c b d

�
: 5

�

The Boston mechanism is a special case of a priority matching mechanism (Roth,

1991) versions of which had been used to match medical school graduates (interns)

to supervising consultants in several regions of UK starting with late 1960s. Each of

these priority matching mechanisms were subsequently abandoned from the UK

hospital–intern markets. Consider a school choice problem with n students and m

schools. Under the Boston mechanism, any student–school pair that ranks each other

first has the highest match priority. Roth (1991) refers to any such match as a (1, 1)

match. Similarly define a (k, l) match to be a match between a pair such that the

student ranks the school kth in his preferences and he has the lth priority at the

school. The Boston mechanism first forms any feasible (1, 1) match, next any

feasible (1, 2) match, . . . , next any feasible (1, n) match, next any feasible (2, 1)

match, next any feasible (2, 2) match, . . . , next any feasible (2, n) match, next any

feasible (3, 1) match, . . . , and last in hierarchy is any feasible (m, n) match. A

priority matching mechanism is a generalization of this idea but it can differ in the

match priority hierarchy. Note that the match priority is lexicographic under the

Boston mechanism: It first considers the student preferences and only then the school

priorities. A similar lexicographic priority matching mechanism was used in

Edinburgh in 1967 and 1968.

Roth (1991) shows that no priority matching mechanism is stable and the Boston

mechanism is no exception. In particular, a student may lose his priority at a school unless

he ranks it as his first choice and hence truthful preference revelation may not be in

students’ best interest.9 Students and their families are forced to play a preference

revelation game that we will analyze in the next section. As field evidence, preference

manipulation is often advocated by the local press. In addition to the Seattle Press story

quoted in the Introduction, consider the following statement from a recent story in the St.

Petersburg Times10:
9 Co

for the
10 Tho

Petersb
Make a realistic, informed selection on the school you list as your first choice. It’s

the cleanest shot you will get at a school, but if you aim too high you might miss.
llins and Krishna (1995) report similar incentives under an on-campus housing mechanism used at Harvard

period 1977–1989.

mas Tobin, Yep, it’s complicated. If you care where your kid ends up, you have to be savvy and alert. St.

urg Times, September 14, 2003.
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Here’s why: If the random computer selection rejects your first choice, your chances

of getting your second choice school are greatly diminished. That’s because you then

fall in line behind everyone who wanted your second choice school as their first

choice. You can fall even farther back in line as you get bumped down to your third,

fourth and fifth choices.
Apparently many parents are well aware of the vulnerability of the Boston mechanism

to preference manipulation.
4. Nash equilibria under the Boston mechanism

In school districts that rely on the Boston mechanism, the students and their parents

play a non-trivial preference revelation game. Under this game, the strategies of the

students are preferences over schools and the outcome is determined by the Boston

mechanism. The choice of their stated preferences and especially their stated top choices

play a key role in determining the schools they will be assigned. In our main result, we

characterize the set of Nash equilibrium outcomes of the preference revelation game

induced by the Boston mechanism. Before we present our main result, we give a detailed

example that illustrates the preference revelation game induced by the Boston mechanism

and highlights some of the key points.

Example 2. There are three students i1, i2, i3 and three schools a, b, c each of which has

one seat. The utilities of the students as well as their priorities are as follows:

a b c

Ui

Ui

Ui

1 2 1 0

2 1 2 0

3 0 2 1

fa

fb

fc

: i3 i2 i1

i2

i3

i3

i1

i1

i2

:

:

Each student can submit one of the preferences abc, acb, bac, bca, cab, cba and therefore

under the Boston mechanism the following 6�6�6 simultaneous game is induced (Fig. 1).

In the resulting game, the payoff vectors (2, 2, 1), (2, 0, 2), (1, 1, 1), (1, 0, 0), (0, 1, 2)

and (0, 2, 0) correspond to the matchings

l1 ¼
�
i1 i2 i3

a b c

�
; l2 ¼

�
i1 i2 i3

a c b

�
; l3 ¼

�
i1 i2 i3

b a c

�
;

l4 ¼
�
i1 i2 i3

b c a

�
; l5 ¼

�
i1 i2 i3

c a b

�
and l6 ¼

�
i1 i2 i3

c b a

�
; respectively:

In the resulting game, the boldface payoff vectors correspond to Nash equilibria. We

have two key observations about the Nash equilibria:

1. The strategy profile which corresponds to truthful preference revelation, (abc, bac,

bca), is NOT a Nash equilibrium of the induced preference revelation game.



acb bca cba

1,0,0 0,2,0 0,2,0 1,0,0 1,0,0

0,2,0 0,2,0 0,2,0 0,2,0 1,0,0 1,0,0

1,0,0 1,0,0 1,0,0 1,0,0 1,0,0 1,0,0

1,0,0 1,0,0 1,0,0 1,0,0 1,0,0 1,0,0

0,2,0 0,2,0 0,2,0 0,2,0 1,0,0 1,0,0

0,2,0 0,2,0 0,2,0 0,2,0 1,0,0 1,0,0

acb

abc acb bac bca cab cba

1,0,0 1,0,0 0,2,0 0,2,0 1,0,0 1,0,0

0,2,0 0,2,0 0,2,0 0,2,0 1,0,0 1,0,0

1,0,0 1,0,0 1,0,0 1,0,0 1,0,0 1,0,0

1,0,0 1,0,0 1,0,0 1,0,0 1,0,0 1,0,0

0,2,0 0,2,0 0,2,0 0,2,0 1,0,0 1,0,0

0,2,0 0,2,0 0,2,0 0,2,0 1,0,0 1,0,0

abc acb bac bca cab cba

0,1,2 0,1,2 2,0,2 2,0,2 2,0,2 2,0,2

0,1,2 0,1,2 2,0,2 2,0,2 2,0,2 2,0,2

1,1,1 1,1,1 1,0,0 1,0,0 1,0,0 1,0,0

1,1,1 1,1,1 1,0,0 1,0,0 1,0,0 1,0,0

0,1,2 0,1,2 0,1,2 0,1,2 2,0,2 2,0,2

0,1,2 0,1,2 0,1,2 0,1,2 2,0,2 2,0,2

abc acb bac bca cab cba

0,1,2 0,1,2 2,0,2 2,0,2 2,0,2 2,0,2

0,1,2 0,1,2 2,0,2 2,0,2 2,0,2 2,0,2

1,1,1 1,1,1 1,1,1 1,0,0 1,0,0 1,0,0

1,1,1 1,1,1 1,1,1 1,0,0 1,0,0 1,0,0

0,1,2 0,1,2 0,1,2 0,1,2 2,0,2 2,0,2

0,1,2 0,1,2 0,1,2 0,1,2 2,0,2 2,0,2

cab

abc acb bac bca cab cba

1,1,1 1,1,1 2,2,1 2,2,1 2,0,2 2,0,2

1,1,1 1,1,1 2,2,1 2,2,1 2,0,2 2,0,2

1,1,1 1,1,1 1,1,1 1,1,1 1,0,0 1,0,0

1,1,1 1,1,1 1,1,1 1,1,1 1,0,0 1,0,0

0,1,2 0,1,2 0,1,2 0,1,2 1,0,0 1,0,0

0,1,2 0,1,2 0,1,2 0,1,2 1,0,0 1,0,0

abc acb bac bca cab cba

1,1,1 1,1,1 2,2,1 2,2,1 2,0,2 2,0,2

1,1,1 1,1,1 2,2,1 2,2,1 2,0,2 2,0,2

1,1,1 1,1,1 1,1,1 1,1,1 1,0,0 1,0,0

1,1,1 1,1,1 1,1,1 1,1,1 1,0,0 1,0,0

0,1,2 0,1,2 0,1,2 0,1,2 2,0,2 2,0,2

0,1,2 0,1,2 0,1,2 0,1,2 1,0,0 1,0,0
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1,0,0
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Fig. 1. The simultaneous game induced by the Boston mechanism for the school choice problem in Example 1. In

this game, i1 is the row player, i2 is the column player and i3 is the matrix player.
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2. The payoff vector in Nash equilibria is either (1, 1, 1) which is the payoff for matching

l3 or (1, 0, 0) which is the payoff for matching l4. The significance of matchings l3

and l4 is that they constitute the set of stable matchings under true preferences.11

The matching l3 is the student-optimal stable matching for the true preferences. Note

that the unstable matching l1 Pareto dominates the student-optimal stable matching l3,
11 The matching l1 is blocked by the student–school pair (i3, b), the matching l2 is blocked by the student–

school pair (i2, a), the matching l5 is blocked by the student–school pair (i1, b) and the matching A6 is blocked by
the student–school pair (i1, b).
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which in turn Pareto dominates the other stable matching l4. The reason that neither of the

stable matchings is Pareto efficient is because stability and Pareto efficiency are not

compatible in the context of school choice.12 That is, the efficiency loss going from l1 to

l3 is due to this incompatibility; therefore, it cannot be recovered given that we are

required to respect the legally determined priorities. However, the efficiency loss going

from l3 to l4 would be caused by student families being stuck in a bad equilibrium. This

additional efficiency loss can be recovered by employing the student-optimal stable

mechanism instead of the Boston mechanism. 5

We are now ready to present our main result which shows that these observations are

not specific to the above example. The key to this result is the similarity between

participation of a student in blocking of an unstable matching and profitable deviation by a

student in the game induced by the Boston mechanism.

Theorem 1. Let PI be the list of true student preferences and consider the preference

revelation game induced by the Boston mechanism. The set of Nash equilibrium outcomes

of this game is equal to the set of stable matchings under the true preferences PI.

Proof. Let Q =(Q1, . . . ,Qn) be an arbitrary strategy profile and let l be the resulting

outcome of the Boston mechanism. Suppose l is not stable under the true preferences.

Then there is a student–school pair (i, s) such that student i prefers school s to his

assignment l(i) and either school s has an empty seat under l, or student i has higher

priority at school s than another student who is assigned a seat at school s. This implies

that under the stated preference Qi student i does not rank school s as his first choice for

otherwise he would be assigned a seat at school s. Let QiV be any strategy where student i

ranks school s as his first choice. Student i is assigned a seat at school s under the profile

(Q�i, QiV) and therefore neither Q is a Nash equilibrium profile nor l is a Nash

equilibrium outcome. Hence, any Nash equilibrium outcome should be stable under the

true preferences.

Conversely, let l be a stable matching under the true preferences. Consider a preference

profile Q =(Q1,. . . ,Qn) where each student i ranks school l(i) as his top choice under his

stated preferences Qi. Under the preference profile Q, the Boston mechanism terminates at

Round 1 and each student is assigned a seat at his first choice based on the stated

preferences. Hence, l is the resulting outcome for the strategy profile Q. Next, we show

that Q is a Nash equilibrium profile. Consider a student i and a school s such that student i

prefers school s to his assignment l(i). Since l is stable, not only all seats of school s are

filled under l but also each student who is assigned a seat at school s under l has higher

priority than student i for school s. Moreover, each such student j ranks school s as his first

choice under Qj. Therefore, given Q�i, there is no way student i can secure a seat at school

s even if he ranks it as his first choice. Therefore, Q is a Nash equilibrium strategy profile

and l is a Nash equilibrium outcome. Hence, any stable matching under the true

preferences is a Nash equilibrium outcome. 5
12 Ergin (2002) identifies a condition on the list of priority orderings that is both necessary and sufficient for the

compatibility of Pareto efficiency and stability. In contrast, any stable matching is Pareto efficient in the context of

two-sided matching markets where the welfare of both sides of the market is taken into account.
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Even though the Boston mechanism itself is not stable, by Theorem 1, all Nash

equilibrium outcomes of the preference revelation game induced by the Boston

mechanism are stable. Instabilities are ruled out as Nash equilibrium outcomes because

they lead to profitable deviations by the students. More specifically, the theorem illustrates

that, if (i, s) is a blocking pair for an allocation l with respect to the true preferences, then

student i can guarantee himself a seat at school s by top-ranking that school; hence, l
cannot be sustained as an equilibrium outcome of the Boston mechanism. The outcome of

the Boston mechanism is Pareto efficient, provided that students truthfully reveal their

preferences. However, truthful preference revelation is rarely in the best interest of

students and efficiency loss is expected. Theorem 1 clarifies the nature of this efficiency

loss: Since all equilibrium outcomes are stable, part of the inefficiency is due to the

incompatibility of efficiency and stability. However, out of all equilibrium outcomes there

is one, the student-optimal stable matching, which Pareto dominates any other. Therefore,

in all equilibrium outcomes with the exception of the student-optimal stable matching,

there is additional efficiency loss.

Researchers in education tend to evaluate the Boston mechanism and its variants based

on the stated preferences of students. For example, Glenn (1991) argues that in 1991, 74%

of sixth graders at Boston were assigned to their first choice school. He also states
As an example of how school selections change, analysis of first-place preferences

in Boston for sixth-grade enrollment in 1989 (the first year of controlled choice in

Boston) and 1990 shows that the number of relatively popular schools doubled in

only the second year of controlled choice. The strong lead of few schools was

reduced as others btried harderQ.
Given the incentives under the Boston mechanism, this conclusion is overly optimistic.

A more plausible scenario is, the first time the mechanism was implemented most families

did not understand the details of the mechanism and naively revealed their preferences

truthfully; by the second year of implementation, the incentives offered by the mechanism

was understood and most families stated their preferences strategically. Along similar lines

Glazerman and Meyer (1994) argue that in 1993–1994 more than 80% of students at

Minneapolis were assigned to their first choice school and they conclude
These numbers imply that student preferences in Minneapolis are quite diverse and

that students perceive that there are significant differences in school characteristics.

If this were not the case, we might expect most students to apply to a very limited set

of schools. As a result, very few students would have been assigned to their

preferred school.
Once again, this conclusion is inadequate. The Boston mechanism gives each student

an incentive to state a preference in which he top ranks the best possible school that he can

be assigned to, given the submitted preferences of other students. However this best

possible school is not necessarily the true top choice. It is interesting to note that, under the

Nash equilibrium strategies we constructed, each student is assigned to his/her first choice

school based on the stated preferences. Whether intentional or not, school districts that use

the Boston mechanism are misleading policy-makers by giving the impression that they
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are able to accommodate most students’ top choices and ironically the Boston mechanism

is the perfect tool to create this impression.
5. The two-sided case: strategic schools

In some cities such as the New York City, schools determine their priority rankings

subject to certain regulatory restrictions. In this case, it is natural to expect that schools will

behave strategically when submitting their priorities. Since both sides of the market are

strategic, we will call this the two-sided case. We will show that, given the Boston

mechanism and under suitable assumptions, it is a dominant strategy for schools to submit

their true preferences over students as their priority rankings. As a corollary, our main

result extends to the two-sided case when schools play undominated strategies.

Let PS =(Ps)saS denote the list of strict school preferences over subsets of students

where each subset corresponds to an incoming class. We assume that for any school s, for

any subset of students J and any two students i, jgJ, iPs j implies ( Jv i) Ps ( Jv j). This

property is known as responsiveness (Roth, 1985) and it is a consistency condition

between preferences over individual students and over sets of students. Two priority

rankings fs and fsV of school s are outcome equivalent if for any list of student preferences

PI and any list of priority rankings of the remaining schools f�s, the Boston mechanism

yields the same matching for (PI, f�s, fs) and (PI, f�s, fsV).

Theorem 2. In the two-sided version of the Boston mechanism, it is a dominant strategy

for any school s to rank students based on its true preferences Ps. Moreover, any other

dominant strategy of school s is outcome equivalent to truthfully ranking students based

on Ps.

Proof. Let fs* rank students based on Ps. Let QI be a list of student preferences and f�s

be a list of school priorities for all schools but school s. Let fs be an arbitrary priority

order and consider the outcome of the Boston mechanism for (QI, f�s, fs). If school s

does not fill its capacity under the resulting matching, then the algorithm does not

depend on fs; hence, it would yield the same matching for any priority order. If on the

other hand s fills its capacity, then let k* be the round where the last seat in fs is

assigned. Note that the assignments in rounds earlier than k* do not depend on fs. At the

beginning of round k*, let J be the set of students who are already assigned a seat at s,

K be the set of unassigned students who rank s as their k*th choice, r be the number of

remaining seats at s and L be the set of top r individual students in K based on Ps. By

responsiveness ( JvL)Rs( JvLV) for any r student subset LV of K and indifference

occurs only when L=LV. Given QI and f�s, if s submits fs* its remaining seats are

assigned to L and, if s submits any other priority order fs p fs*, its seats are assigned to

LV for some r student subset LV of K. Therefore, s is weakly better-off submitting fs*

than submitting fs, and indifferent only if L=LV, when (QI, f�s, fs) and (QI, f�s, fs*)

yield the same matching.

Since the initial choice of QI and f�s was arbitrary, we conclude that it is a dominant

strategy for s to submit fs* and that any other dominant strategy fs must be outcome

equivalent to fs*. 5
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Corollary 1. In the two-sided version of the Boston mechanism, the set of Nash

equilibrium outcomes in undominated strategies is equal to the set of stable matchings

under the true preferences.

Remark 1. Consider a two-sided matching market where each participant has a capacity of

one and refer the two sides of the market as men and women. Consider the preference

revelation game induced by the man-optimal stable mechanism. The combination of a

result by Roth (1984b) and another by Gale and Sotomayor (1985) in this context is

analogous to Corollary 1: Under the man-optimal stable mechanism, the set of Nash

equilibrium outcomes in undominated strategies is equal to the set of stable matchings

under the true preferences.
6. Controlled choice

One of the major concerns about the implementation of school choice programs is

that they may result in racial and ethnic segregation at schools. Because of these

concerns, school choice programs in some districts are limited by court-ordered

desegregation guidelines. This version of school choice is known as controlled choice.

In Minneapolis, controlled choice constraints are implemented by imposing type-specific

quotas. Under this practice, students are partitioned into different groups based on their

type (which often depends on their ethnic/racial background) and, for each school, type-

specific quotas are determined in additional to the capacity of the school. These quotas

may be rigid or they may be flexible. For example, in Minneapolis, the district is

allowed to go above or below the district-wide average enrollment rates by up to 15%

points in determining the ethnic/racial quotas. Currently in Minneapolis and for 10 years

until 1999 in Boston, the following variant of the Boston mechanism is used to assign

students to public schools.

The Boston mechanism with type-specific quotas: The students are partitioned based on

their types and, for each school, in addition to the capacity of the school, type-specific

quotas are determined. For each school, a strict priority ordering of the students is

determined, each student submits a preference ranking of the schools and, based on type-

specific quotas, student priorities and submitted preferences, the student assignment is

determined in several rounds.

Round 1: In Round 1, only the first choices of the students are considered. For each

school, consider the students who have listed it as their first choice and assign seats of the

school to these students one at a time following their priority order unless the quota of a

type is full. When that happens, remaining students of that type are rejected and the

process continues with the students of other types until either there are no seats left or there

is no student left who has listed it as his first choice.

In general, at Round k: Consider the remaining students. In Round k, only the kth

choices of these students are considered. For each school with still available seats,

consider the students who have listed it as their kth choice and assign the remaining seats

to these students one at a time following their priority order unless the quota of a type is

full. When that happens, remaining students of that type are rejected and the process
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continues with the students of other types until either there are no seats left or there is no

student left who has listed it as his kth choice.

The procedure terminates when each student is assigned a seat at a school.

As in the case of the Boston mechanism, this modified version also induces a non-

trivial preference revelation game. We need an additional definition in order to characterize

the set of Nash equilibrium outcomes of this game.

Given a controlled choice problem, we call a matching l weakly stable if it does

not violate the type-specific quotas, and there is no student–school pair (i, s) such that

student i prefers school s to his assignment l(i) and either (a) school s has not filled

its quota for the type of student i and it has an empty seat, or (b) school s has not

filled the quota for the type of student i and student i has higher priority than another

student (of any type) who is assigned a seat at school s, or (c) school s has filled its

quota for the type of student i but student i has higher priority than another student of

his own type who is assigned a seat at school s. Following Kelso and Crawford (1982)

and Roth (1991), Abdulkadiroǧlu (2002) shows that the set of weakly stable matchings

is non-empty. We are ready to characterize the set of Nash equilibrium outcomes of the

preference revelation game induced by the Boston mechanism with type-specific

quotas.

Theorem 3. Let PI be the list of true student preferences and consider the preference

revelation game induced by the Boston mechanism with type-specific quotas. The set of

Nash equilibrium outcomes of this game is equal to the set of weakly stable matchings

under the true preferences PI.

Proof. Similar to the proof of Theorem 1. 5

Many of the key properties on the structure of stable matchings carry over to the set

of weakly stable matchings provided that types of students form a partition of the

students (see Abdulkadiroǧlu, 2002). Most notably, given a controlled choice problem,

there exists a weakly stable matching which is at least as good as any other weakly

stable matching for any student (Kelso and Crawford, 1982; Roth, 1991; Abdulk-

adiroǧlu, 2002). Theorem 3 shows that policy implications of our main result carry

over to the controlled choice model. Most notably, transition to the controlled choice

version of the student-optimal stable mechanism is likely to result in Pareto

improvements in school districts that currently rely on the Boston mechanism with

type-specific quotas.13
7. Nash equilibria under priority matching mechanisms

As we have already indicated, the Boston mechanism is a special case of priority

matching mechanisms. A natural question is whether our characterization result extends to

other priority matching mechanisms. The following example shows that the answer is
13 Roth (1991) reports that a similar transition had been carried out in Edinburgh hospital–intern market in 1969

where a priority matching mechanism was replaced with the controlled choice version of a stable mechanism.
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negative. Indeed, there is a priority matching mechanism and a school choice problem

where the set of stable matchings and the set of Nash equilibrium outcomes of the induced

preference revelation game are two distinct sets.

Example 3. Let I ={i1, i2} be the set of students, S ={a, b} be the set of schools and q =(2, 2)

be the school capacity vector. Student priorities at schools and their preferences are as

follows:

fa : i1 � i2
fb : i2 � i1

Pi1 : b� a

Pi2 : a� b

Note that the unique stable matching for this problem is:

l1 ¼
i1 i2
b a

�
:

�

Next consider the priority matching mechanism which first considers school priorities and

only then the student preferences. This mechanism

! first forms any feasible (1, 1) match,

! next forms any feasible (2, 1) match,

! next forms any feasible (1, 2) match,

! and finally forms any feasible (2, 2) match,

when there are two students and two schools. Observe that, given the above priorities at

schools, the outcome of this mechanism is

l2 ¼
i1 i2
a b

��

regardless of the stated student preferences. Hence, any preference profile is a Nash

equilibrium with an outcome of l2. 5

While the above example is discouraging, a minor modification in the school

choice model allows us to generalize our characterization result to priority matching

mechanisms. In the original model, each student ranks all schools and she does not

have the ability to bvetoQ any school. In practice, however, students often have

outside options (such as private schools) and they are allowed to consider any

subset of schools. We next modify the school choice model to allow for this

possibility.

In this richer model, each student i has strict preferences Pi over Sv{i} where i

denotes the option of remaining unmatched. Let Ri denote the weak preference relation

induced by Pi. School s is acceptable to student i if and only if sRii.

A matching in this modified model is a function l: IYSvI such that

(i) l(i)aSv{i} for all ia I and

(ii) |l�1(s)|Vqs for all saS,
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and it is stable if

(a) l(i)Rii for any student i,

(b1) there is no student–school pair (i, s) and another student j with l( j)= s such that

sPil(i) and fs(i)b fs( j), and

(b2) there is no student–school pair (i, s) such that sPil(i) and |l�1(s)|bqs.

A priority matching mechanism is defined similarly as in the original model with the

exception that students are only admitted to acceptable schools. Recall that a (k, l) match

is defined to be a match between a student–school pair such that the student ranks the

school kth in his preferences and he has the lth priority at the school. Given a modified

problem with n students and m schools, a match priority is a one-to-one function

p : 1; N ; nf g � 1; N ;mf gY 1; N ; nmf g
and the resulting priority matching mechanism determines its outcome in nm steps with

the following priority matching algorithm:

Step 1: form any feasible and acceptable p�1(1) match.

Step 2: form any feasible and acceptable p�1(2) match.

v v
Step nm: form any feasible and acceptable p�1(nm) match.

Each student who remains unmatched at the end of nm steps is matched to herself.

For example, under the special case of the Boston mechanism, any feasible and

acceptable p�1(1)= (1, 1) match is formed at Step 1, any feasible and acceptable

p�1(2)= (1, 2) match is formed at Step 2, etc. Note that the first n steps under this

description correspond to Round 1 of the original description of the Boston mechanism,

the next n steps correspond to Round 2 and so on.

A match priority p is monotonic if (k, l)V (kV, lV) implies p(k, l)Vp(kV, lV). A priority

matching mechanism is monotonic if it is induced by a monotonic match priority.

We are now ready to present our final result.

Theorem 4. Consider the modified school choice model where each student can consider

any subset of the schools. Let P be a list of student preferences and consider the preference

revelation game induced by any monotonic priority matching mechanism. The set of Nash

equilibrium outcomes of this game is equal to the set of stable matchings under the true

preferences P.

Proof. Fix a modified problem where P denotes the list of student preferences. Fix a

monotonic match priority p and let P denote the resulting priority matching mechanism.

Consider the induced preference revelation game.

bsQ: First suppose that l is a stable matching under P. For each student i with l(i)= i,
let P̃i be a preference ranking with no acceptable school. For each student i with l(i)= s,
let P̃i be a preference ranking where s is the only acceptable school. Clearly P(P̃)=l.

We next show that P̃ is a Nash equilibrium. Suppose towards a contradiction that

there is a student i, a preference ranking PiV and a school s such that Pi(P̃�i, PiV)= s and
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sPil(i). Since l is stable, there are qs students j1, . . . , jqs
each of whom is assigned a

seat at school s under l and also has a higher priority for school s than student i.

Consider the priority matching algorithm under (P̃ �i, PiV). School s is the only

acceptable school for each student ja{ j1, . . . , jqs
} under P̃j and, by monotonicity of the

match priority p, the match of each such student j and school s has higher match priority

than the match of student i and school s. Therefore, the seats of school s are exhausted

before the match of i and s is considered, achieving the desired contradiction. Hence, P̃

is a Nash equilibrium and l is a Nash equilibrium outcome.

boQ: Let P̃ be a strategy profile that yields the unstable matching l under the priority

matching mechanism P. We will show that P̃ is not a Nash equilibrium for each of the

following three cases:

(a) there is a student i* such that i*Pi*l(i*),
(b1) there is a student–school pair (i*, s*) and another student j* with l( j*)= s*

such that s*Pi*l(i*) and fs*(i*)b fs*( j*), and

(b2) there is no student–school pair (i*, s*) such that s*Pi*l(i*) and

|l�1(s*)|bqs*.

(a) Let PiV be a preference ranking where no school is acceptable. The priority matching

mechanism P leaves student i unmatched under the profile (P̃�i*, PiV*) and hence PiV* is a
profitable deviation.

(b) Let PiV* be a preference ranking where the only acceptable school is s*. Let

l denote the priority ranking of student i* at school s* (i.e. l = fs*(i*)) and let r* denote

the step at which all feasible and acceptable (1, l) matches are formed by the priority

matching algorithm for the match priority p (i.e. r* :=p(1, l)). We will show by

induction that:

Claim. Consider the priority matching algorithm for the match priority p. At the

beginning of each round r (1V rV r*):

1. For each student ip i*, if i is already matched under P̃, then he is also already matched

under (P̃�i*, Pi*V ).
2. For each school s, there are at least as many unassigned seats under (P̃�i*, Pi*V ) as

under P̃.

Proof of the Claim. Since the priority matching algorithm starts with each student

unmatched, the Claim holds for r =1. Suppose the Claim holds for r where 1V r b r*. We

will show that it holds for (r +1) as well.

1. Take any student i p i* who gets matched to a school, say school s, at Step r under P̃.

We will show that student i is matched to a school by the end of Step r under (P̃�i*,

Pi*V ). School s has at least one available seat at the beginning of Step r under P̃ and

therefore by part 2 of the inductive assumption it has at least one available seat at the

beginning of Step r under (P̃�i*, Pi*V ) as well. Suppose student i is still unmatched at the

beginning of Step r under (P̃�i*, Pi*V ). Since i p i*, student i and school s form a p�1(r)
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match under (P̃�i*, Pi*V ) and hence student i gets matched by the end of Step r under

(P̃�i*, Pi*V ).
2. Take any school s and consider any student i who is matched with school s at Step r

under (P̃�i*, Pi*V ). We will show that either student i is matched with school s at Step r

under P̃ or there are no seats left at school s at the beginning of Step r under P̃. Recall

that under Pi*V the only acceptable school is s*, and by assumption i* and s* can only

be matched at Step r* (in case a seat is still available at s*). Therefore, i p i*. By
assumption, student i is unmatched at the beginning of Step r under (P̃�i*, Pi*V ) and
therefore by part 1 of the inductive assumption student i is unmatched at the beginning

of Step r under P̃ as well. Hence, if s has any seats left at the beginning of Step r under

P̃, then student i and school s form a p�1(r) match and get matched at Step r.

This completes the proof of the claim. 5

Recall that by assumption student i* is unmatched at the beginning of Step r* under

(P̃�i*, Pi*V ). Suppose (b1) holds and student j* and school s* form a (k, lV) match under P

˜ for some l b lV. By monotonicity of the priority matching mechanism P a (1, l) match

will be considered before a (k, l V) match for any k, and hence school s* has an empty

seat at the beginning of Step r* (i.e. when (1, l) matches are considered) under P̃. If on

the other hand (b2) holds, then again school s* has an empty seat at the beginning of

Step r* (and indeed throughout the algorithm) under P̃. Therefore, by the above Claim,

school s* has an empty seat at the beginning of Step r* under (P̃�i*, Pi*V ) whether (b1)
or (b2) holds and student i* and school s* are matched at Step r* under (P̃�i*, Pi*V ).
Hence, Pi*V is a profitable deviation for student i* showing that P̃ is not a Nash

equilibrium. 5
8. Incomplete information

So far we relied on Nash equilibrium (and Nash equilibrium in undominated

strategies) in our equilibrium analysis and hence we assumed complete information

about the preferences. As we have shown, our result is quite robust for complete

information environments and a natural question is what happens if the complete

information assumption is relaxed. We next show that our characterization does not

carry over to an incomplete information environment and moreover a student may be

better off under the Boston mechanism than under the student-optimal stable

mechanism.

Example 4. Let I ={i1, i2, i3} be the set of students, S ={a, b, c} be the set of schools and

q =(1, 1, 1) be the school capacity vector. Suppose that all three schools have the same

priority ranking

fa ¼ fb ¼ fc : i1 � i2 � i3:

All students are expected utility maximizers and while the types (i.e. utility functions)

Ui2
, Ui3

of students i2, i3 are known with certainty, student i1 is of one of the three types
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Ui1

a, Ui1

b, Ui1

c with probabilities 1/4, 1/4 and 1/2, respectively. The student types are as

follows:

2 1 1

1 2 0

Ui1
Ui1

Ui1

0 0 2

a

b

c

a b c

2

1

Ui2

0

a

b

c

1

2

Ui3

0

a

b

c

Consider the preference revelation game induced by the Boston mechanism and

observe that truth-telling, i.e. the strategy where

! student i1 reports a–b–c when he is of type Ui1

a, b –a –c when he is of type Ui1

b and c–

a–b when he is of type Ui1

c,

! student i2 reports a –b –c and

! student i3 reports b –a –c

is a Bayesian Nash equilibrium with an expected payoff vector of (2, 3/2, 3/2).14 The

outcome of this equilibrium is a lottery but not all matchings in its support are stable. In

particular, when the realized type profile is (Ui1

a, Ui2
, Ui3

), truth-telling yields

i1 i2 i3
a c b

��

which is an unstable matching.

The following table compares the expected payoffs of the dominant-strategy

equilibrium of the student-optimal stable mechanism and the above described Bayesian

Nash equilibrium of the Boston mechanism:

2 2 2

2 2 2

Ui1
Ui1

Ui1
a b c Ui2

1

Ui3

Student–Optimal Stable Mechanism

The Boston Mechanism

7
4

3 
2

3 
2

Note that the Bayesian Nash equilibrium described above benefits the low-priority student

i3 at the expense of the intermediate priority student i2. 5
14 Since student i1 has the highest priority at each school, truthful preference revelation yields him his top choice

regardless of his type. It is also clear that no student can profit from improving the ranking of his last choice

school. That leaves b–a–c as the only potentially profitable deviation for student i2 and a–b–c as the only

potentially profitable deviation for student i3. However, using strategy b–a–c reduces the expected utility of

student i2 to 5/4 and using strategy a–b–c reduces the expected utility of student i3 to 1 showing that truth-telling

is a Bayesian Nash equilibrium.
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9. Conclusion

In this paper, we presented an equilibrium analysis of the Boston mechanism, an

assignment mechanism that is in use at several U.S. school districts including Boston,

Cambridge, Charlotte, Minnesota, Seattle and St. Petersburg-Tampa. Our results suggest

that a transition to an alternative mechanism, the student-optimal stable mechanism, is

likely to result in potentially significant welfare gains. Such a transition will also eliminate

the need for strategizing because truthful preference revelation is a dominant strategy

under the student-optimal stable mechanism. In contrast, as we present, the Boston

mechanism induces a complicated coordination game with multiple equilibria among large

numbers of parents. Unlike in complete information environments, some students may

benefit from the Boston mechanism in incomplete information environments due to

coordination failures of other students. As it is recently argued by the Boston Public

Schools Strategic Planning Manager,15 bassignment becomes a high-stakes gamble for

familiesQ under the Boston mechanism. One important direction for future research is a

thorough analysis of equilibria in incomplete information environments for it will enhance

our understanding of this high stakes gamble.
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