Econ 308 HW \# 4

1. There are three alternatives A, B, C and seven voters with the following rankings:

Voter 1	Voter 2	Voter 3	Voter 4	Voter 5	Voter 6	Voter 7
A	A	C	C	A	B	B
B	B	B	B	C	A	C
C	C	A	A	B	C	A

(a) Is there a majority alternative? Why or why not?
(b) What is the Borda Score of each alternative?
(c) What is the Condorcet score of each alternative?
2. Consider the following apportionment problem: There are a total of 25 seats to be allocated. There are five states with the following populations: State A (13), State B (26), State C (39), State D (74), and State E (98). Find the allocations suggested by Hamilton's, Jefferson's, Webster's, Adam's, and Hill's methods.
3. There are four claimants with the following claims: Claim $\mathrm{A}=\$ 50$, Claim $\mathrm{B}=\$ 200$, Claim C $=\$ 300$, Claim $\mathrm{D}=\$ 450$. There is a total of $\$ 800$ to allocate.
(a) Find the claims allocation suggested by the proportional rule.
(b) Find the claims allocation suggested by the Talmudic solution.
(c) Find the claims allocation suggested by the Maimonides's rule.
(d) Find the claims allocation suggested by the Shapley value.
4. Consider the following cost sharing game: There are three players with the following costs: $\mathrm{c}(\mathrm{A})=15, \mathrm{c}(\mathrm{B})=16, \mathrm{c}(\mathrm{C})=18, \mathrm{c}(\mathrm{A}, \mathrm{B})=24, \mathrm{c}(\mathrm{A}, \mathrm{C})=22, \mathrm{c}(\mathrm{B}, \mathrm{C})=26$, and $\mathrm{c}(\mathrm{A}, \mathrm{B}, \mathrm{C})=30$.
(a) Graphically identify the core of this cost sharing game.
(b) Find the Shapley value of this cost sharing game.

