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A new class of matching problems that models centralized college admissions via
standardized tests is presented. The allocation mechanism that is used in real-life
applications of this problem in Turkey is analyzed. It is shown that this mechanism,
multi-category serial dictatorship, has a number of serious deficiencies, most
notably inefficiency, vulnerability to manipulation, and the potential of penalizing
students for improved test scores. Exploiting the relation between this class of
problems and the celebrated college admissions model (Gale 6 Shapley [4]), an
alternative mechanism is proposed that overcomes these deficiencies. This
mechanism��the Gale�Shapley student optimal mechanism��is characterized as
``best'' in this context. Journal of Economic Literature Classification Numbers: C71,
C78, D71, D78. � 1999 Academic Press

1. INTRODUCTION

In this paper a new class of matching problems is introduced that models
centralized college admissions via standardized tests. The model precisely
mimics the current college admissions practices in Turkey: there is a central
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authority that places students in colleges. This authority annually offers a
number of tests and ranks all students who wish to enroll in a college
in a number of skill categories. Colleges are public goods and they have
no say in the admissions process. However, for each faculty there is
an associated skill category and a student with a better score in this
category has a higher priority for this faculty. This requirement is called
fairness.

This class of problems is closely related to the celebrated college admis-
sions model (Gale 6 Shapley [4]). There is one key difference between
them. In the student placement problem the only agents are the students:
their examination scores and their preferences for colleges determine
assignments. The colleges are merely objects to be consumed. On the other
hand, in the college admissions problem both students and colleges are
agents, students express their preferences for colleges and colleges for
students (perhaps using examination scores).

The student placement mechanism currently in use in Turkey, namely
multi-category serial dictatorship, is fair. However, it has a number of
serious deficiencies. It is not Pareto efficient and not even a second-best
mechanism among fair mechanisms. It is not strategy-proof: it can be
manipulated by students. It does not necessarily respect improvements in
test scores: a student may increase her score in one or more skill categories
and yet be punished with a worse assignment when everything else stays
the same. Exploiting the relation between this model and the college admis-
sions model, we propose an alternative placement mechanism, namely the
Gale�Shapley student optimal mechanism, and show that it is the only
second-best mechanism, essentially the only strategy-proof mechanism,1

and essentially the only mechanism that respects improvements. These
results not only suggest a potential improvement over the current
mechanism in use in Turkey, but also show that there is a best mechanism
to use in this context.

Some might argue that among all fair assignments society should prefer
one in which students are assigned according to their comparative advan-
tages (as determined by test scores), rather than by their personal prefer-
ences. This argument is refuted. We believe that students should be given the
greatest freedom of choice consistent with their aptitudes, since motivation
is more important in ultimate success than mere scores on standardized
exams. We prove that the only reasonable mechanism to be used assigns
students according to their preferences rather than by their comparative
advantages.
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2. STUDENT PLACEMENT PROBLEMS

In Turkey college admissions is centralized. It is the responsibility of a
student placement office to assign students to colleges, in fact to the par-
ticular faculties (e.g., engineering, medical, dental, business) of colleges,
with no student assigned to more than one college-faculty or slot. Every
year this office offers a standardized test that every student who wishes to
attend a college is required to take. This examination consists of several
component tests, including a mathematics test, a science test, a verbal
apptitude test, etc. Different faculties prize different skills; accordingly, they
use different combinations of tests to arrive at rankings of the students. For
example, the engineering faculties combine scores from the mathematics
and science tests, the medical and dental faculties use the scores of the
science test, and the business faculties combine scores from the mathe-
matics and verbal apptitude tests. Every faculty-type ranks the applying
students identically, strictly according to the relevant scores.

Colleges are considered to be public services: they have no say in the
admissions process. Each faculty of each college has a capacity for the
number of students it can admit fixed in advance. Prior to the examination,
each student submits to the placement office his preferences over the
faculties in colleges he is willing to attend (e.g., first choice engineering at
Bilkent University, second choice engineering at Bog$ azic� i University, third
choice business at Koc� University, etc.). In order to lighten the terminology
we will throughout take the term college to mean a college-faculty, so that
a college is associated with a particular well-defined skill category.

These are the raw data on which the decision to place students in
college-faculty slots depend: the preferences of the students, their relevant
examination scores, and the capacities of the colleges.

We now formalize this model. A (student) placement problem consists of

1. a set of students S=[s1 , ..., sn],

2. a set of colleges C=[c1 , ..., cm],

3. a capacity vector q=(qc1
, ..., qcm

) where qci
is the capacity of

college ci ,

4. a list of student preferences PS=(Ps1
, ..., Psn

) where Psi
is the

preference relation of student si over colleges including the no-college
option,

5. a set of skill categories T=[t1 , ..., tk],

6. a list of student test scores f =( f s1, ..., f sn) where f si=( f si
t1

, ..., f si
tk

)
is a vector which gives the test score of student si in each category, and

7. a function t: C � T where t(c) is the skill category required by
college c.
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Each student has a strict preference on C _ [c0], where c0 denotes the no-
college option and qc0

=|S|. Let Rs denote the at-least-as-good-as relation
associated with the preference relation Ps for all s # S. That is, for all
c, c$ # C _ [c0] we have cRs c$ if and only if cPsc$ or c=c$. For all s~ # S, let
P&s~ =(Ps)s # S"[s~ ] . It is assumed that there are no ties in the test scores of
any skill category, that is f si

t { f sj
t for all t # T and si , sj # S with si {sj .

2

This assumption implies that the test scores induce a strict ranking of the
students in each skill category. Throughout the paper S, C, T, t are fixed
and hence each triple list of preferences, test scores, and capacities defines
a placement problem (PS , f, g).

A matching is an allocation of college slots to students such that no
student occupies more than one college slot. Formally it is a function
+: S � C _ [c0] such that |+&1(c)|�qc , for all c # C. If +(s)=c0 student s
is not assigned any college slot. Given a preference relation Ps of a student
s, initially defined over C _ [c0], it is extended to the set of matchings in
the following natural way: student s prefers the matching + to the matching
+$ if and only if she prefers +(s) to +$(s). By an abuse of notation we also
use Ps to denote this extension.

A matching + is individually rational if no student is assigned to a college
that is worse than the no-college option. Formally a matching + is
individually rational if +(s)Rsc0 for all s # S.

A matching + is non-wasteful if whenever a student prefers a college c to
his assignment, the college c has all its slots filled. Formally a matching +
is non-wasteful if cPs+(s) implies |+&1(c)|=qc for all s # S and for all c # C.

A matching ' Pareto dominates a matching + if no student prefers + to
' and there is at least one student who prefers ' to +. Formally, a matching
' Pareto dominates a matching + if '(si) Rsi

+(si) for all si # S and
'(sj) Psj

+(sj) for some sj # S. A matching + is Pareto efficient if it is not
Pareto dominated by any other matching. Note that Pareto efficiency
implies individual rationality and non-wastefulness in this context.

A placement mechanism is a systematic procedure that selects a matching
for each placement problem. A placement mechanism is individually
rational if it always selects an individually rational matching, it is non-
wasteful if it always selects a non-wasteful matching, and it is Pareto
efficient if it always selects a Pareto efficient matching. A placement
mechanism . Pareto dominates another placement mechanism � if no
student ever prefers the matching selected by � to the matching selected by
. and there is at least one placement problem where at least one student
prefers the matching selected by . to the matching selected by �.
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3. FAIRNESS

The following fairness criterion is essential for a mechanism to be
acceptable: students with better test scores should be assigned their better
choices. Formally a matching + is fair if for all students s, s~ # S with
+(s~ )=c~ ,

c~ Ps +(s) implies f s~
t(c~ )> f s

t(c~ ) .

For example, suppose a student is assigned her third choice and her first
choice c is in the mathematics category whereas her second choice c~ is in
the science category. Then no student with a lower mathematics score
should be assigned a slot at college c and no student with a lower science
score should be assigned a slot at college c~ .3

The following lemma characterizes the set of fair matchings in a very
intuitive way: a base score is announced for each college and each student
selects the best college among those with lower base scores than his or her
scores. If feasible, the induced matching is fair. Conversely all fair
matchings may be obtained in this way.4

Lemma 1. A matching + is fair if and only if there exists a list of base
scores f

*
=( fc1

, ..., fcm
) that satisfies the following conditions for all s # S and

c # C:

(i) +(s)=c implies f s
t(c� fc ,

(ii) f s
t(c)� fc implies +(s) Rsc.

Proof. Let + be a fair matching. For each college c define fc=
mins # +&1(c) f s

t(c) and let f
*

=( fc1
, ..., fcm

). We claim that + and f
*

satisfy the
conditions. The first holds by the definition of the fc . Suppose the second
does not, namely, there is a student s and a college c with f s

t(c)� fc and yet
cPs+(s). Then +(s){c, and the construction of fc together with the fact
that there are no ties in scores imply that f s

t(c)> fc . So there must be a
student s~ # +&1(c) with f s

t(c)> f s~
t(c) : that is, student s prefers c, and c ranks

s higher than student s~ , contradicting the fairness of +. This establishes
necessity.

To prove sufficiency, suppose + is a matching and f
*

=( fc1
, ..., fcm

) is a
list of scores that satisfy the conditions. Let the students s, s~ be such that
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+(s~ )=c~ and c~ Ps+(s). By the first condition, f s~
t(c~ )> fc~ , whereas by second

condition fc~ > f s
t(c~ ) , so f s~

t(c~ )> f s
t(c~ ) , showing that + is fair. Q.E.D.

In fact, the student placement office in Turkey announces the base scores
for each college together with the matching it selected. In this way the
fairness of the selected matching can be easily verified by each student.

A placement mechanism is fair if it always selects a fair matching. If
there is only one category (and hence only one test score for each student)
then it is easy to see that there is only one placement mechanism that is fair
and Pareto efficient:5 serial dictatorship, where the student with the highest
test score is assigned her top choice, the student with the next highest score
is assigned his top choice among the remaining slots, and so on. Indeed,
admissions to a set of prestigious Turkish public high schools is done in
exactly this manner. Every year a test is offered which ranks students (in
only one category) and the serial dictatorship matching induced by this
ranking is used to assign students to these high schools.

4. ASSOCIATED COLLEGE ADMISSIONS PROBLEM

A college admissions problem (Gale 6 Shapley [4]) consists of a set of
students S=[s1 , ..., sn], a set of colleges C=[c1 , ..., cm], a capacity vector
q=(qc1

, ..., qcm
) where qci

is the capacity of college ci , a list of student
preferences PS=(Ps1

, ..., Psn
) where Psi

is the preference of student si over
colleges that includes the no-college option, and a list of college preferences
PC=(Pc1

, ..., Pcm
) where Pci

is the preference of college ci over students that
includes the no-student option. For all c~ # C, let P&c~ =(Pc)c # C"[c~ ] . S, C are
fixed throughout, so each triple (PS , PC , q) of student preferences, college
preferences, and capacities define a college admissions problem. As before
the notation Rs and Rc is used for the at least as good relation associated
with the preferences Ps and Pc .

It is tempting to treat the class of placement problems as a special case
(or a sub-class) of college admissions problems. But this is emphatically
not valid: in college admissions problems, colleges are agents, they have
their preferences for students and they may choose their strategies in
expressing their preferences. In student placement problems, colleges are
merely objects to be consumed: the students are the only agents, the only
strategic players.6 Notions such as the core and stability that are central for
college admissions problems do not have any direct meaning in placement
problems. Moreover, the very definition of Pareto efficient depends on
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whether or not colleges are agents. This does not mean that the findings for
college admissions problems are irrelevant in the present context. Quite the
contrary, they are crucial for student placement problems as well.

To each placement problem (PS , f, q) define the associated college
admissions problem (PS , PC , q) by constructing a preference relation Pc for
each college c based on the test scores in its category t(c). That is, for all
c # C the preference Pc is such that

sPcs~ if and only if f s
t(c)> f s~

t(c) , for all s, s~ # S,

and

sPcs0 , for all s # S,

where s0 denotes the no-student option.
The definitions of matching and individual rationality carry over to

college admissions problems, and an admissions mechanism is simply a
procedure that selects a matching for each college admissions problem.

A student-college pair (s, c) # S_C blocks a matching + if

cPs+(s) and |+&1(c)|<qc ,

or

cPs+(s) and sPc s~ for some s~ # +&1(c).

A matching is stable if it is individually rational and is blocked by no
student-college pair. Let S(PS , PC , q) denote the set of stable matchings
for the college admissions problem (PS , PC , q). The following lemma
follows from the definitions.

Lemma 2. A matching is individually rational, fair, and non-wasteful
for a placement problem if and only if it is stable for its associated college
admissions problem.

There is a unique placement mechanism that is fair and Pareto efficient
on the subclass of placement problems with one skill category, as men-
tioned earlier. This observation immediately follows from Lemma 2
together with the following two facts:

1. If all colleges have the same preferences in a college admissions
problem then there is a unique stable matching.
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2. Pareto efficiency implies individual rationality and non-wasteful-
ness in the context of placement problems.

Stability not only plays a central role in the theoretical literature concer-
ning two-sided matching problems, but is also essential for real-life applica-
tions of these problems (see Roth [11] and Roth 6 Xing [14]). It is by
now well-known that for each college admissions problem there is a stable
matching that is preferred to any other stable matching by all the students.
This stable matching is also the worst stable matching for all the colleges.
We refer to this matching as the student optimal stable matching. There is
an analogous stable matching that is preferred by the colleges, and we refer
to it as the college optimal stable matching. Let +S(PS , PC , q) denote
the student optimal stable matching for the college admissions problem
(PS , PC , q) and +C(PS , PC , q) denote the college optimal stable matching.
These key concepts in college admissions problems permit the definition of
the following placement mechanisms. The Gale�Shapley student optimal
mechanism selects the student optimal stable matching of the associated
college admissions problem for each placement problem. Similarly, the
Gale�Shapley college optimal mechanism selects the college optimal stable
matching of the associated college admissions problem for each placement
problem.

The student optimal stable matching can be obtained using the student
proposing deferred acceptance algorithm (Gale 6 Shapley [4]):

Step 1. Each student proposes to his top choice among those colleges
for which he is acceptable. Each college c rejects all but the best qc students
among those students who proposed to it. Those that remain are
``tentatively'' assigned one slot at college c.

In general,

Step k. Each student who is rejected in the last step proposes to his top
choice among those colleges that has not as yet rejected him and for which
he is acceptable. (If there is no such college the student stops proposing.)
Each college c rejects all but the best qc students among those students
who have just proposed and those that were tentatively assigned to it at the
last step. Those that remain are ``tentatively'' assigned one slot at college c.
The algorithm terminates when no student proposal is rejected. Each
student is assigned to her or his final tentative assignment. If a student is
rejected by all colleges to which she or he has applied, the student is
assigned to no college.

Similarly, the college optimal stable matching can be obtained using the
college proposing deferred acceptance algorithm where the roles of colleges
and students are interchanged.
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5. MULTI-CATEGORY SERIAL DICTATORSHIP

Since fairness is the essential criterion in Turkish college admission prac-
tices, it is natural to presume that the mechanism used there is fair. It is.
We call this mechanism multi-category serial dictatorship, for it is a natural
extension of serial dictatorship modified to deal with several rankings in
different categories. The following notation is useful to define it. Let a
tentative placement be a correspondence &: S � C _ [c0] such that no
college is assigned to more students than its capacity. Note that unlike a
matching, a tentative placement allows a student to be assigned more than
one college slot. So a tentative placement is not necessarily a matching
(though of course every matching is a tentative placement). Each category
t has a total capacity qt=�c[qc : t(c)=t].

Multi-category serial dictatorship is defined by means of the following
recursive algorithm applied to any student placement problem (PS , f, q).
For step 1, (P1

S , f, q)=(PS , f, q).

Step k. Given (Pk
S , f, q),

(a) consider a category t and the ranking induced by the test scores
in this category. Assign (only) the colleges in category t (i.e., [c # C :
t(c)=t]) to (at most qt) students using the serial dictatorship applied
to this ranking. That is, student with the highest score in category t is
assigned his top choice among those colleges in category t, the student with
the next highest score is assigned her top choice among the remaining slots
in this category, and so on. Do the same for all categories. Assign c0 to all
students who are not assigned a college. In general, this leads to a tentative
placement since a student may be assigned slots in two or more colleges,
which are all in different categories. Name the tentative placement &k . Note
the following property that characterizes &k : c # &k(s) if and only if any
student s* ranked higher than student s in category t=t(c), but not
tentatively assigned to c, must prefer to c either another college c* in the
same category t=t(c*) or the no college option.

(b) For each student s construct the preference relation Pk+1
s from

Pk
s as follows. If s is assigned no slot, then Pk+1

s =Pk
s . If s is assigned one

or more slots, then define Pk+1
s by moving the no-college option c0 directly

after the best of these assignments in Pk
s (so that only one of the

assignments is acceptable to the student in this new preference relation).
The rankings of the colleges are not changed. Let Pk+1

S =(Pk+1
s1

, ..., Pk+1
sn

)
be the list of new preferences.

The algorithm terminates when no student is assigned more than one
college slot. The multi-category serial dictatorship mechanism selects this
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final tentative placement, which is a matching. Denote multi-category serial
dictatorship by .D.

The following example demonstrates the algorithm.

Example 1. Let S=[s1 , s2 , s3 , s4 , s5], C=[c1 , c2 , c3], q=(qc1
, qc2

,
qc3

)=(2, 1, 1), T=[t1 , t2], t(c1)=t1 , t(c2)=t(c3)=t2 . Let preferences PS

=(Ps1
, Ps2

, Ps3
, Ps4

, Ps5
) and test scores f =( f s1, f s2, f s3, f s4, f s5) be as

follows:

c2Ps1
c1Ps1

c0 Ps1
c3 f s1=( f s1

t1
, f s1

t2
)=(90, 90)

c1Ps2
c2Ps2

c3 Ps2
c0 f s2=( f s2

t1
, f s2

t2
)=(80, 60)

c1Ps3
c3Ps3

c2 Ps3
c0 f s3=( f s3

t1
, f s3

t2
)=(70, 70)

c1Ps4
c2Ps4

c0 Ps4
c3 f s4=( f s4

t1
, f s4

t2
)=(60, 80)

c2Ps5
c3Ps5

c1 Ps5
c0 f s5=( f s5

t1
, f s5

t2
)=(50, 50)

These scores induce the following rankings in categories t1 and t2 :

t1 : s1 s2 s3 s4 s5

t2 : s1 s4 s3 s2 s5

Step 1.

t1 :
s1

c1

s2

c1

t2 :
s1

c2

s4

��
s3

c3

This diagram is obtained as follows. Consider serial dictatorship applied to
skill category t1 . The only college in this category is college c1 and it has
2 slots. The first student in this category is s1 , and since c1 is acceptable to
her under Ps1

she is tentatively assigned one of its slots. The next student
is s2 for whom c1 is also acceptable, and she is tentatively assigned the
second slot of college c1 . There are no other slots in this category. Consider
serial dictatorship associated with category t2 . There are two colleges in
this category, college c2 and college c3 , both with 1 slot. The first student
in this category is s1 and the best acceptable college for her under Ps1

is
college c2 and she is tentatively assigned this slot. The only remaining slot
in this category is one slot at college c3 . The next student in this category
is s4 for whom college c3 is not acceptable under Ps4

. The next student is
s3 for whom college c3 is acceptable under Ps3

and he is tentatively assigned
the only slot at college c3 . Therefore Step 1 yields the following tentative
placement:

&1=\ s1

c1 , c2

s2

c1

s3

c3

s4

c0

s5

c0+ .
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Since each of students s1 , s2 , and s3 are assigned at least one slot, their
preferences are changed to:

c2P2
s1

c0P2
s1

c1P2
s1

c3 ,

c1P2
s2

c0P2
s2

c2P2
s2

c3 ,

c1P2
s3

c3P2
s3

c0P2
s3

c2 .

For the other two students, P2
s4

=P1
s4

, and P2
s5

=P1
s5

.

Step 2. Find the serial dictatorship outcomes for the preference profile
P2

S .

t1 :
s1

��
s2

c1

s3

c1

t2 :
s1

c2

s4

��
s3

c3

This yields the following tentative placement:

&2=\s1

c2

s2

c1

s3

c1 , c3

s4

c0

s5

c0+
and the following list of preferences:

c2P3
s1

c0P3
s1

c1P3
s1

c3 ,

c1P3
s2

c0P3
s2

c2P3
s2

c3 ,

c1P3
s3

c0P3
s3

c3P3
s3

c2 ,

c1P3
s4

c2P3
s4

c0P3
s4

c3 ,

c2P3
s5

c3P3
s5

c0P3
s5

c1 .

Step 3. Find the serial dictatorship outcomes for the preference profile
P3

S .

t1 :
s1

��
s2

c1

s3

c1

t2 :
s1

c2

s4

��
s3

��
s2

��
s5

c3

This yields the following tentative placement (which is a matching):

&3=\s1

c2

s2

c1

s3

c1

s4

c0

s5

c3+ .
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Since no student is assigned more than one college the algorithm
terminates and .D(PS , f, q)=&3 .

Note that, in the special case where every college is in a different
category, this algorithm is equivalent to the college proposing deferred
acceptance algorithm. While the two algorithms are different in general,
they always yield the same outcome.

Theorem 1. The multi-category serial dictatorship and the Gale�Shapley
college optimal mechanisms are equivalent.

Proof. Consider a placement problem (PS , f, q) and the sequence of
placement problems (P l

S , f, q), l=1, ..., l� , generated by the algorithm,
where P1

S=PS . Associate with each the corresponding college admissions
problem (P l

S , PC , q).
The sets of stable matchings of any two of these problems are identical,

S(P l
S , PC , q)=S(P l+1

S , PC , q).
To see this suppose, first, that + # S(P l

S , PC , q). Then + must be
individually rational in (P l+1

S , PC , q). For otherwise, +(s1)=c for some
student s1 and some college c with c0P l+1

s1 c, whereas cP l
s1 c0 since + is

individually rational in (P l
S , PC , q). By the algorithm this means that stu-

dent s1 is tentatively assigned a better college c1 in the placement problem
(P l

S , f, q). That is, c1 # &l (s1) with c1P l
s1 cP l

s1 c0 . Let t(c1)=t*.
Either |+&1(c1)|<qc1 or |+&1(c1)|=qc1 . In the first case it is immediately

clear that the pair (s1, c1) blocks + in (Pl
S , PC , q), a contradiction. In the

second case, s1 � +&1(c1), s1 # &&1
l (c1), and |&&1

l (c1)|�qc1 imply that the set
+&1(c1) must include some student s2 � &&1

l (c1). If s2 ranks below s1 in
category t*=t(c1), then (s1, c1) again blocks +. Otherwise, s2 ranks above
s1 in category t* and since s2 � &&1

l (c1) and c1P l
s1 c0 , he must be tentatively

assigned a better college c2 in the same category t(c2)=t* at &l . The situa-
tion concerning (s1, c1) and c is now repeated for (s2, c2) and c1, where s2

ranks higher than s1 in category t*: +(s2)=c1 and c2 # &l (s2) in the place-
ment problem (P l

S , f, q) with c2P l
s2 c1. So either (s2, c2) blocks + or the

situation repeats again for some (s3, c3) and c2, where s3 ranks higher than
s2 in category t*, t(c3)=t*, c3P l

s3 c2 and c3 # &l (s3). This situation cannot be
repeated forever; the ranks of the students in category t* keep increasing,
so at some stage (sk, ck) must block +, a contradiction.

So + is individually rational in (P l+1
S , PC , q), as claimed. The absence of

any blocking pair in (P l
S , PC , q) implies the same for (Pl+1

S , PC , q), since
the restriction of the student preferences to colleges are identical. Thus,
+ # S(P l+1

S , PC , q).
To show the reverse inclusion suppose that + � S(P l

S , PC , q). Then
either + is not individually rational in (P l

S , PC , q), which immediately
implies that + is not individually rational in (P l+1

S , PC , q) by construction;
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or there is a pair (s, c) that blocks + in (P l
S , PC , q), which implies that it

also blocks + in (P l+1
S , PC , q). So + � S(P l+1

S , PC , q), and therefore
S(P l

S , PC , q)=S(P l+1
S , PC , q)=S(PS , PC , q).

Observe that at termination, when the tentative assignment &l� is a match-
ing, the algorithm stops, but the problem (P l� +1

S , PC , q) may be constructed
and it's stable set is, as has been proven, equivalent to its predecessors'. But
the matching &l� assigns to every college c # C its qc highest ranked students
under Pc (or all students if there are fewer) from among those who do not
prefer the no-college option c0 to c. This is the college optimal stable
matching +C(P l� +1

S , PC , q). But since it is the college optimal stable match-
ing for this problem it is also the college optimal stable matching for the
original problem, +C(PS , PC , q). Q.E.D.

A variant of the Gale�Shapley college optimal mechanism has been used
to match medical interns and hospitals in the United States since 1951.7

The algorithm used for this purpose is different than both the college
proposing deferred acceptance algorithm and the algorithm used for
Turkish student placement. (See Roth [9] for a description of this
algorithm.) In May 1997, the Board of Directors of the National Resident
Matching Program decided to switch to a variant of the Gale�Shapley
student optimal mechanism starting with the 1998 match (see Roth 6
Peranson [12]). Both of these mechanisms have their strengths and
weaknesses in the context of college admissions problems. But in the
following sections it is shown that the Gale�Shapley student optimal
mechanism is the clear choice in the context of student placement
problems.

6. PARETO EFFICIENCY

Multi-category serial dictatorship has a serious drawback. It is not
Pareto efficient. The following simple example makes the point.

Example 2. Let S=[s1 , s2], C=[c1 , c2], q=(qc1
, qc2

)=(1, 1), T=[t1 ,
t2], t(c1)=t1 , t(c2)=t2 . Let preferences PS=(Ps1

, Ps2
) and test scores

f =( f s1, f s2) be as follows:

c1Ps1
c2Ps1

c0 f s1=( f s1
t1

, f s1
t2

)=(80, 90)

c2Ps2
c1Ps2

c0 f s2=( f s2
t1

, f s2
t2

)=(90, 80)
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Step 1 of the multi-category serial dictatorship algorithm assigns student s1

one slot at college c2 , and student s2 one slot at college c1 . Since both
students are assigned only one slot the algorithm terminates and assigns
both students their second choices:

.D(PS , f, q)=\s1

c2

s2

c1+ .

Clearly the matching that assigns both students their top choices��which is
fair��Pareto dominates this matching.

The Pareto inefficiency of multi-category serial dictatorship is apparent,
given its equivalence to the Gale�Shapley college optimal mechanism.
What about other mechanisms? Does there exist a mechanism that is both
fair and Pareto efficient? The answer is unfortunately negative. An example
in Roth 6 Sotomayor [13] can easily be adopted to make this point.

Example 3. Let S=[s1 , s2 , s3], C=[c1 , c2], q=(qc1
, qc2

)=(1, 1),
T=[t1 , t2], t(c1)=t1 , t(c2)=t2 . Let preferences PS=(Ps1

, Ps2
, Ps3

) and
test scores f =( f s1, f s2, f s3) be as follows:

c2Ps1
c1Ps1

c0 f s1=( f s1
t1

, f s1
t2

)=(90, 80)

c1Ps2
c2Ps2

c0 f s2=( f s2
t1

, f s2
t2

)=(80, 70)

c1Ps3
c2Ps3

c0 f s3=( f s3
t1

, f s3
t2

)=(70, 90)

First recall that any matching that is Pareto efficient should be both
individually rational and non-wasteful. There are six such matchings:

+1=\s1

c1

s2

c2

s3

c0+ , +2=\s1

c1

s2

c0

s3

c2+ , +3=\s1

c2

s2

c1

s3

c0+ ,

+4=\s1

c2

s2

c0

s3

c1+ , +5=\s1

c0

s2

c1

s3

c2+ , +6=\s1

c0

s2

c2

s3

c1+ .

Among these matchings only +2 is fair.8 But it is Pareto dominated by +4 .
An immediate implication is the following impossibility result.

Lemma 3. There is no placement mechanism that is both fair and Pareto
efficient.
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c1 and f s1

t(c2)> f s2
t(c2) ; +3 is not fair since c2Ps3

c0 and
f s3

t(c2)> f s1
t(c2) ; +4 is not fair since c1Ps2

c0 and f s2
t(c1)> f s3

t(c1) ; +5 is not fair since c1 Ps1
c0 and

f s1
t(c1)> f s2

t(c1) ; finally +6 is not fair since c1 Ps1
c0 and f s1

t(c1)> f s3
t(c1) .



Can this impossibility result be an excuse for using multi-category serial
dictatorship? The answer is negative. In Example 2 the matching that
assigns both students their top choices is fair and Pareto dominates the
matching selected by multi-category serial dictatorship. Therefore the
multi-category serial dictatorship is not even a second-best mechanism.
What then is the class of second-best placement mechanisms? It turns out
that there is only one such mechanism.

Theorem 2. The Gale�Shapley student optimal mechanism Pareto
dominates any other fair mechanism.

Proof. It must be shown that, for any placement problem (PS , f, q) the
student-optimal stable matching +S(PS , PC , q) of the associated college
admissions problem (PS , PC , q) Pareto dominates any other fair matching.
Let + be a fair matching for the placement problem (PS , f, q). There are
three cases to consider.

(1) The matching + is individually rational and non-wasteful:
Lemma 2 implies that + # S(PS , PC , q) and the conclusion follows from
the definition of the student-optimal stable matching.

(2) The matching + is individually rational but wasteful: In this case
there are colleges with empty slots under +. Consider the placement
problem (PS , f, q� ) with q� c=|+&1(c)| for all c # C, where all empty slots are
eliminated. The matching + is fair, individually rational, and non-wasteful
for (PS , f, q� ), and therefore + # S(PS , PC , q� ). Hence +S(PS , PC , q� ) either
Pareto dominates, or is equal to +. But increasing the capacities can never
hurt a student under the student-optimal stable matching, and therefore
+S(PS , PC , q) either Pareto dominates, or is equal to +S(PS , PC , q� ). Since
+ is wasteful, +{+S(PS , PC , q) and therefore the transitivity of the Pareto
dominance relation implies that +S(PS , PC , q) Pareto dominates +.

(3) The matching + is not individually rational: There are students
who prefer the no-college option to their assignments. Let & be the match-
ing that assigns the no-college option to all such students, and +(s) to all
other students. The matching & Pareto dominates +. Moreover it is fair and
individually rational. Therefore by cases 1 and 2, & is either equal to or
Pareto dominated by +S(PS , PC , q). The transitivity of the Pareto
dominance relation implies that +S(PS , PC , q) Pareto dominates +. Q.E.D.

It is well-known that the student optimal stable matching Pareto
dominates any other stable matching. In addition, as is shown by
Theorem 2, the student optimal stable matching of the associated college
admissions problem Pareto dominates any other fair matching as well. This
proves that there is a unique second-best mechanism.
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7. STRATEGY-PROOFNESS

What about the strategic properties of multi-category serial dictatorship?
Is it immune to manipulation by the students? Consider the following
example.

Example 4. (The same as Example 2). S=[s1 , s2], C=[c1 , c2],
q=(qc1

, qc2
)=(1, 1), T=[t1 , t2], t(c1)=t1 , t(c2)=t2 and

c1Ps1
c2Ps1

c0 f s1=( f s1
t1

, f s1
t2

)=(80, 90)

c2Ps2
c1Ps2

c0 f s2=( f s2
t1

, f s2
t2

)=(90, 80)

Recall from Example 2 that

.D(PS , f, q)=\s1 s2

c2 c1+ .

Now suppose student s1 announces the false preference relation c1P� s1
c0P� s1

c2 ,
where only college c1 is acceptable. In this case

.D((P� s1
, Ps2

), f, q)=\s1

c1

s2

c2+ ,

and student s1 successfully manipulates the multi-category serial dic-
tatorship mechanism.

A placement mechanism is strategy-proof if no student can ever benefit
by unilaterally misrepresenting his or her preferences. Strategy-proofness is
a very desirable and yet demanding property. If achieved, it makes
truthtelling a dominant strategy. Is there any fair placement mechanism
that is strategy-proof? The answer is well-known.

Theorem 3. (Dubins 6 Freedman [3], Roth [8]). The Gale�Shapley
student optimal mechanism is strategy-proof.9

Moreover, it is ``essentially'' the only fair mechanism that is strategy-
proof.
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Theorem 4. (Alcalde 6 Barbera� [2]). The Gale�Shapley student
optimal mechanism is the only student placement mechanism that is
individually rational, non-wasteful, fair, and strategy-proof.

8. RESPECTING IMPROVEMENTS

Multi-category serial dictatorship is subject to yet another major flaw.

Example 5 (Again, Example 2). S=[s1 , s2], C=[c1 , c2], q=(qc1
, qc2

)
=(1, 1), T=[t1 , t2], t(c1)=t1 , t(c2)=t2 and

c1Ps1
c2Ps1

c0 f s1=( f s1
t1

, f s1
t2

)=(80, 90)

c2Ps2
c1Ps2

c0 f s2=( f s2
t1

, f s2
t2

)=(90, 80)

Recall from Example 2 that

.D(PS , f, q)=\s1

c2

s2

c1+ .

Now suppose student s1 scores worse in the tests and his new test scores
are f� s1=( f� s1

t1
, f� s1

t2
)=(70, 70). In this case

.D(PS , ( f� s1, f s2), q)=\s1

c1

s2

c2+ ,

and student s1 is rewarded by getting his top choice as a result of a worse
performance! Alternatively, going in the other direction, student s1 is
punished by getting his second choice for doing better in the tests.

A placement problem (PS , f� , q) is an improvement for student s over
(PS , f, q) if f� si= f si for all si {s and f� s� f s. The two problems are the
same except that the scores of one student s may have improved.

In terms of college admissions problems (PS , P� C , q) is an improvement
for student s over (PS , PC , q) if for all c # C

sPc s� implies sP� cs� for all s� # S _ [s0], and

s*Pcs� if and only if s*P� cs� for all s*, s� # S _ [s0], s*{s, s� {s.

Again the two problems are the same except that some student may have
moved up in the preferences of one or more colleges. But these definitions
of ``improvement'' harbor a subtle difference. There is more latitude for
changes in the preferences of colleges in admissions problems than in the
changes of the rankings of colleges in placement problems. In placement a
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change of examination score may force a simultaneous improvement across
many colleges, which is not the case in admissions.

A placement mechanism . respects improvements10 if for any s # S,
(PS , f� , q) an improvement for s over (PS , f, q), implies

.(PS , f� , q) Rs .(PS , f, q).

Similarly an admissions mechanism . respects improvements if for any
s # S, (PS , P� C , q) an improvement for s over (PS , PC , q), implies

.(PS , P� C , q) Rs.(PS , PC , q).

The Gale�Shapley student optimal mechanism is essentially the only
mechanism that respects improvements. This is established in two steps due
to the differences in the meanings of ``improvement'' as applied to admissions
and placement problems. We begin with college admissions mechanisms.

Theorem 5. The unique stable admissions mechanism that respects
improvements is the Gale�Shapley student optimal mechanism.

Proof. We first show that the Gale�Shapley student optimal mechanism
respects improvements. Let (PS , P� C , q) be an improvement for student s
over (PS , PC , q), and +� S and +S be their respective student optimal stable
matchings. It must be shown that +� S(s) Rs +S(s). Suppose on the contrary
+S(s) Ps+� S(s). To begin, note that +S � S(PS , P� C , q) by the definition of
student optimal stable matching.

Let c=+S(s). Suppose that student s announces the fake preferences P*s
where

cP*sc0P*s c* for all c* # C, c*{c.

That is, under the fake preference relation she prefers only college c to
the no-college option. Consider the college admissions problem
(P*s , P&s , P� C , q).

We claim that +S # S(P*s , P&s , P� C , q). Since +S is individually rational in
(PS , PC , q) and student s is assigned her top choice at +S it is also
individually rational in (P*s , P&s , P� C , q). Suppose that +S is blocked by
some pair in the problem (P*s , P&s , P� C , q). It cannot be blocked by a pair
involving a student other than s, for then this same pair would necessarily
block +S in (PS , PC , q), a contradiction. Clearly student s cannot be
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partner to a blocking pair either, so +S # S(P*s , P&s , P� C , q) as claimed.
Moreover since +S(P*s , P&s , P� C , q) Pareto dominates any other stable
matching of (P*s , P&s , P� C , q), we must have +S(P*s , P&s , P� C , q)(s)=c. But
then

+S(P*s , P&s , P� C , q)(s)

=c

Ps +S(PS , P� C , q)(s)

=+� S(s)

which means that student s can manipulate the Gale�Shapley student
optimal mechanism. This contradicts Theorem 3 and completes the proof
of the first part.

To establish uniqueness, let . be an admissions mechanism that is stable
and that respects improvements. Suppose . is not the Gale�Shapley student
optimal mechanism. Then there exists an admissions problem (PS , PC , q)
such that

.(PS , PC , q){+S(PS , PC , q).

For simplicity of notation let , be the matching .(PS , PC , q), and +S be
the matching +S(PS , PC , q). In particular, this means there exists a student
s # S with ,(s){+S(s)=c.

Consider the admissions problem (PS , Pc , P� &c , q), where for all ĉ # C,
ĉ{c the preferences P� ĉ are the same as Pĉ except that student s is the least
acceptable student. That is, for all ĉ # C, ĉ{c,

s~ P� ĉs* if and only if s~ P ĉs* for all s~ , s* # S, s~ {s, s*{s,

s~ P� ĉsP� ĉs0 for all s~ # S, s~ {s.

The key to the proof is the following Claim:

+ # S(PS , Pc , P� &c , q) implies +(s) Rsc.

To prove this Claim observe first that +S # S(PS , Pc , P� &c , q), since
otherwise a pair that blocks +S in (PS , Pc , P� &c , q) would block it in
(PS , PC , q) as well.

Now suppose, to the contrary, that cPs+(s), and let
+̂C=+C(PS , Pc , P� &c , q). Then since +̂C is the student-worst stable match-
ing for (PS , PC , P� &c , q) this means that cPs +̂C(s), which in turn implies
c*=+̂C(s){c. Moreover c*{c implies that college c* ranks student s
worse than any other student under P� c* .

The situation is then:

+S, +̂C # S(PS , Pc , P� &c , q),
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and

+S(s)=c, +̂C(s)=c*, c{c*.

McVitie 6 Wilson [6] and Roth [10] show that any college is always
assigned the same number of students by any pair of stable matchings, so
there must exist a student ŝ{s with +S( ŝ)=c* and +̂C(ŝ){c*. We
have ŝP� c* s, so the stability of +̂C implies +̂C( ŝ) Pŝc*, or equivalently
+̂C( ŝ) Pŝ +S(ŝ). But this contradicts the fact that +̂C is the student-worst
stable matching for the problem (PS , Pc , P� &c , q), and so establishes the
Claim.

The proof is now easily finished. Since . is stable, ,� =.(PS , Pc ,
P� &c , q) # S(PS , Pc , P� &c , q) and so by the Claim, ,� (s) Rs+S(s). Moreover,
.(PS , PC , q)=, # S(PS , PC , q) and ,(s){+S(s) imply +S(s) Ps,(s), and
therefore ,� (s) Ps,(s). This contradicts the fact that . respects
improvements and completes the proof. Q.E.D.

The theorem does not carry over to placement mechanisms because in
the context of placement problems it may be impossible to single out one
college c and construct a placement problem whose associated admissions
problem has the properties of (PS , Pc , P� &c , q). One natural way of hand-
ling this difficulty is asking a placement mechanism be college admissions
invariant: namely, that it selects the same matching for any two placement
problems that have the same associated college admissions problem. In fact
this condition is obviously satisfied by both the Gale�Shapley student
optimal and multi-category serial dictatorship mechanisms. Invoking
invariancy, the uniqueness result carries over to placement problems.

Theorem 6. The unique fair, individually rational, and non-wasteful
placement mechanism that is college admissions invariant and respects
improvements is the Gale�Shapley student optimal mechanism.

9. CONCLUDING REMARKS

The argument in support of the Gale�Shapley student optimal mecha-
nism for placement problems is overwhelming: it is the only second-best
placement mechanism, it is essentially the only fair mechanism that is
strategy-proof, and it is also essentially the only fair mechanism that
respects improvements. The results are summarized in the table below,
where . is any fair mechanism except the Gale�Shapley student optimal
mechanism, .D is the multi-category serial dictatorship, .C is the Gale�
Shapley college optimal mechanism, and .S is the Gale�Shapley student
optimal mechanism.
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Second- Strategy- Respects
best proof improvements

.D=.C No No No
(Theorem 1) (Example 2) (Example 4) (Example 5)

.S Yes Yes Yes
(Theorem 2) (Theorem 3) (Theorem 6)

. No No No
(Theorem 2) (Theorem 4) (Theorem 6)

These are not merely theoretical arguments, they are practical reasons.
To be acceptable, a mechanism cannot penalize a student for improving
her examination scores. Moreover, to offer all students effective equal treat-
ment it is essential that expressing their true preferences be in their best
interest. Today's mechanism��the college optimal mechanism��induces
misrepresentation and so assignments that do not even correctly incor-
porate the students' preferences. Society is not well served by assigning
students according to their comparative advantages.
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