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In many real-life applications of house allocation problems, whenever an existing
tenant wants to move, he needs to give up his current house before getting another
one. This practice discourages existing tenants from such attempts and results in
loss of potentially large gains from trade. Motivated by this observation, we propose
a simple mechanism that is Pareto efficient, individually rational, and strategy-proof.
Our approach is constructive and we provide two algorithms, each of which can be
used to find the outcome of this mechanism. One additional merit of this
mechanism is that it can accommodate any hierarchy of seniorities. Journal of
Economic Literature Classification Numbers: C71, C78, D71, DF8. � 1999 Academic Press

1. INTRODUCTION

A class of resource allocation problems that is not only of theoretical
interest, but also of practical importance is the class of house allocation
problems: There is a set of houses (or some other indivisible items such as
offices, tasks, etc.) which have to be allocated to a group of agents. Rents
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are exogenously given and there is no medium of exchange such as money.
While this assumption is restrictive, it is satisfied in many real-life applica-
tions, especially when housing is subsidized. Examples are on-campus
housing and public housing. It is also a natural assumption if the
indivisible good is used for job related purposes. Two such applications are
office space and parking space allocated to university faculty. Usually there
are several types of housing and the attractiveness of each type changes
from person to person. Therefore the central planner, say the housing
office, needs to find a ``mechanism'' to allocate houses to agents. A mechanism,
namely the random serial dictatorship, and its variants are commonly used
in many real-life applications of these problems. This mechanism randomly
orders the agents and the first agent in the order is assigned his top choice,
the next agent is assigned his top choice among the remaining houses, and
so on. (In many applications the ordering is not entirely random and it
depends on seniority as well.) In the original model where the sets of agents
and houses are exogenously given, the random serial dictatorship has
some very appealing properties. Most notably it is simple, Pareto efficient,
and strategy-proof (i.e., it is immune to misrepresentation of preferences).
Unfortunately this model cannot capture an important feature present in
many real-life applications: the existence of tenants who already live in a
house and who can keep on doing so. For example, professors are usually
entitled to keep their current offices and students in many campuses can
keep their on-campus houses up to three or four years. There is no reason
to think that these agents may not wish to move to another house (or a
new office in case of a professor). Often in practice, those who want to
move are asked to give up their houses before they are assigned another
one. Since there are no guarantees of getting a better house (or whether
they will get a house at all), many of them simply keep their current
houses, which results in loss of potential gains from trade.2 As an implica-
tion, in many cases the outcome of the random serial dictatorship (or even
its version that favors the existing tenants) is not Pareto efficient. This
observation is our main motivation.

We introduce a richer class of problems that includes existing tenants as
well as new applicants and propose a class of mechanisms, namely top
trading cycles mechanisms, which are not only Pareto efficient, but also
individually rational and strategy-proof. By individual rationality all agents
are assured a house that is at least as good as their own and therefore there
is no risk in applying for a new house. By strategy-proofness truth-telling
is a dominant strategy so there is no point in misrepresenting preferences.
Once full participation and sincere revelation are guaranteed, Pareto
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efficiency of these mechanisms ensures the Pareto efficiency of the final out-
come. Top trading cycles mechanisms have two additional features that are
crucial for practical purposes: (i) they are simple direct mechanisms: agents
report their preferences and the outcome is obtained using one of the two
algorithms that we provide; and (ii) they can accommodate any hierarchy
of seniorities (as in the case of random serial dictatorship).

This paper, to our knowledge, is the first to analyze a house allocation
model where there are both existing tenants and new applicants.3 The
model with only new applicants is introduced by Hylland and Zeckhauser
[8]4 and the model with only existing tenants is introduced by Shapley
and Scarf [20].5 The top trading cycles mechanism from random orderings
reduces to random serial dictatorship in the first model and to the com-
petitive mechanism in the second, which are the predominant mechanisms
in these models. Therefore it integrates ideas from both literatures.6

The organization of the rest of the paper is as follows: In Section 2 we
motivate our proposed mechanism by restricting attention to the simple
case with one existing tenant. In Section 3 we give the formal model and
definitions. We devote Section 4 to real-life mechanisms. In Section 5 we
introduce and study the class of top trading cycles mechanisms. In Section
6 we provide extensions that are useful for real-life applications. Finally, in
the Appendix, we present an omitted proof.

2. PREVIEW

In this section, we motivate the paper and give an intuition for our
proposed mechanism in the simple case of one existing tenant.

A number of houses has to be allocated to a group of agents through a
lottery. The agents are randomly ordered and the first agent is assigned his
or her top choice, the next agent his or her top choice among the remain-
ing houses, and so on. One of the houses is already occupied and its tenant
is given two options: He or she can keep that house or give it up and enter
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Peranson [17]). See also Roth [16] and Mongell and Roth [12] for case studies concerning
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the lottery. Since there is no guarantee that he or she will get a better
house, the existing tenant may choose the first option, which in turn may
result in a loss of potential gains from trade.

Example 1. There are three agents i1 , i2 , i3 , and three houses h1 ,
h2 , h3 . Agent i1 is a current tenant and occupies house h1 . Agents i2 , i3 are
new applicants and houses h2 , h3 are vacant houses. The following matrix
gives the utilities of agents over houses:

h1 h2 h3

i1 3 4 1

i2 4 3 1

i3 3 4 1

Agent i1 has two options:

1. keep house h1 or

2. give it up and enter the lottery.

Utility from keeping house h1 is 3. If he or she enters the lottery then there
are several possibilities depending on the chosen ordering, summarized in
the following table:

ordering assignment of i1 assignment of i2 assignment of i3

i1�i2�i3 h2 h1 h3

i1�i3�i2 h2 h3 h1

i2�i1�i3 h2 h1 h3

i2�i3�i1 h3 h1 h2

i3�i1�i2 h1 h3 h2

i3�i2�i1 h3 h1 h2

Assuming that agent i1 is an expected-utility maximizer, utility from enter-
ing the lottery is

1
6 u(h1)+ 3

6 u(h2)+ 2
6 u(h3)= 3

6+ 12
6 + 2

6= 17
6 .

Therefore the optimal strategy is keeping house h1 . Since both agent i2 and
agent i3 prefer house h2 to house h3 , the eventual outcome is

\ i1

h1

i2

h2

i3

h3 + or \ i1

h1

i2

h3

i3

h2+ ,
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both with 1�2 probability. Among these two matchings the first is Pareto
dominated by

\ i1

h2

i2

h1

i3

h3 +
and therefore this mechanism may lead to Pareto inefficient outcomes.

2.1. Avoiding Inefficiency with One Existing Tenant

The cause for the inefficiency is that the mechanism fails to guarantee the
existing tenant a house that is at least as good as the one he or she already
holds. Therefore we should fix this ``deficiency.'' One natural modification
that will do the trick in the simple case with one existing tenant is the
following:

1. Order the agents by means of a lottery.

2. Assign the first agent his or her top choice, the second agent his
or her top choice among the remaining houses, and so on, until someone,
demands the house the existing tenant holds.

3. (a) If the existing tenant is already assigned a house, then do not
disturb the procedure.

(b) If the existing tenant is not assigned a house, then modify the
remainder of the ordering by inserting him or her at the top, and proceed
with the procedure.

In this way the existing tenant cannot lose his or her house without getting
a better one, and therefore has nothing to loose from participating. We
illustrate the modified mechanism with Example 1.

Example 1 (Continued). The lottery can result in six orderings. If the
ordering is one of i1 �i2�i3 , i1�i3�i2 , or i3�i1�i2 , then agent i1 leaves before
anyone demands house h1 and therefore the resulting allocation is not
affected:

initial modified assignment assignment assignment
ordering ordering of i1 of i2 of i3

i1�i2�i3 i1�i2�i3 h2 h1 h3

i1�i3�i2 i1�i3�i2 h2 h3 h1

i3�i1�i2 i3�i1�i2 h1 h3 h2

237HOUSE ALLOCATION WITH EXISTING TENANTS



If the ordering is i2 �i1 �i3 or i2 �i3�i1 , then in the first step agent i2 demands
house h1 . In both cases the ordering is changed to i1�i2 �i3 and the result-
ing outcome is as follows:

initial modified assignment assignment assignment
ordering ordering of i1 of i2 of i3

i2�i1�i3 i1�i2�i3 h2 h1 h3

i2�i3�i1 i1�i2�i3 h2 h1 h3

Finally if the ordering is i3�i2 �i1 , then in the first step agent i3 is assigned
house h2 and in the next step agent i2 demands house h1 . The remainder
of the ordering is changed to i1�i2 and this results in the following outcome:

initial modified assignment assignment assignment
ordering ordering of i1 of i2 of i3

i3�i2�i1 i3�i1�i2 h1 h3 h2

Therefore the modified mechanism selects one of

\ i1

h2

i2

h1

i3

h3 + , \ i1

h2

i2

h3

i3

h1+ , or \ i1

h1

i2

h3

i3

h2+ ,

with probabilities of 1�2, 1�6, and 1�3 respectively. Note that all these
matchings are Pareto efficient.

3. THE MODEL

We are now ready to introduce the formal model. A house allocation
problem with existing tenants, or simply a problem, consists of:

1. a finite set of existing tenants IE ,

2. a finite set of new applicants IN ,

3. a finite set of occupied houses HO=[hi] i # IE
,

4. a finite set of vacant houses HV , and

5. a list of preference relations P=(Pi) i # IE _ IN
.

Let I=IE _ IN denote the set of all agents and H=HO _ HV _ [h0]
denote the set of all houses plus the null house. (Here the null house h0

denotes the no house option.) Every existing tenant i # IE is endowed with
(i.e., currently lives in) the occupied house hi # HO . Every agent i # I has a
strict preference relation Pi on H. Let Ri denote the at-least-as-good-as
relation associated with Pi . We assume that the null house h0 is the last
choice for each agent. This assumption is for expositional simplicity and it
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is not essential. We later discuss the modifications needed in the absence of
this assumption. Let P be the class of all such preferences on H.

A (house) matching + is an assignment of houses to agents such that

1. every agent is assigned one house, and

2. only the null house h0 can be assigned to more than one agent.

To say that an agent is assigned the null house is to say the agent is not
assigned any ``real'' house at all. For any agent i # I, we refer to +(i) as the
assignment of agent i under +. Let M be the set of all matchings. Given a
preference relation Pi of an agent i, initially defined over H, we extend it
to the set of matchings in the following natural way: Agent i prefers the
matching + to matching & if and only if he prefers +(i) to &(i). That is, our
model is one with no consumption externalities. A matching is Pareto
efficient if there is no other matching that makes all agents weakly better
off and at least one agent strictly better off. A matching is individually
rational if no existing tenant strictly prefers his endowment to his assignment.

A housing lottery is a probability distribution over all matchings. Let
2M denote the set of all housing lotteries. A housing lottery is ex post
Pareto efficient if it gives positive weight to only Pareto efficient matchings.

A matching mechanism consists of

1. a strategy space Si for every agent i # I, and

2. an outcome function .: >i # I Si � M which assigns a matching
for every strategy-profile.

Similarly a lottery mechanism consists of

1. a strategy space Si for every agent i # I, and

2. an outcome function �: >i # I Si � 2M which assigns a housing
lottery for every strategy-profile.

A direct matching mechanism is a matching mechanism where the strategy
space is the set of all strict preferences P for all agents. A direct lottery
mechanism is defined analogously. A direct matching mechanism is individually
rational if it always selects individually rational matchings and it is Pareto
efficient if it always selects Pareto efficient matchings. A direct lottery
mechanism is ex post individually rational if it gives positive weight to only
individually rational matchings and it is ex post Pareto efficient if it gives
positive weight to only Pareto efficient matchings. A direct matching or
lottery mechanism is strategy-proof (or dominant strategy incentive com-
patible) if truth-telling is a dominant strategy in its associated preference
revelation game.
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4. REAL-LIFE MECHANISMS

The random serial dictatorship and its variants are commonly used in
real-life applications. Some examples include graduate housing at Michigan,
Princeton, Rochester, and Stanford and undergraduate housing at Carnegie�
Mellon, Duke, Harvard, Michigan, Northwestern, Pennsylvania, and Yale.
We need the following additional definitions in order to define this
mechanism and some of its common variants.

Given a strict preference Pi , the choice of agent i from a set of houses
G�H is the best house in G. Given a group J�I of agents, an ordering of
these agents is a one-to-one function f : [1,..., |J |] � J. Here agent f (1) is
ordered first, agent f (2) is ordered second, and so on. Given a group J�I
of agents and a set G�H of houses, the serial dictatorship induced by
ordering f is defined as follows: The agent who is ordered first under f
gets his or her top choice from G, the next agent gets his or her top
choice among the remaining houses, and so on. Since the preferences are
strict, the serial dictatorship assigns every agent in J a unique house
(possibly the null house). The random serial dictatorship randomly selects
an ordering from a given distribution of orderings7 and uses the induced
serial dictatorship.

4.1. Random Serial Dictatorship with Squatting Rights

We are now ready to introduce a variant of the random serial dictator-
ship that allows the existing tenants to keep their current houses.8 This
version is used for undergraduate housing at Carnegie�Mellon, Duke,
Harvard, Northwestern, and Pennsylvania, among others. The strategy
spaces and the outcome function for the random serial dictatorship with
squatting rights are as follows:

Strategy spaces.

1. Existing tenants: Every existing tenant i # IE announces whether he
or she is In or Out and a strict preference Qi over all ``real'' houses.9

Formally his or her strategy space is Si=Si1_S i2=[In, Out]_P.

2. New applicants: Every new applicant i # IN announces a strict
preference Qi over all houses. Formally his or her strategy space is Si=P.
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Outcome function. For a given strategy profile s # >i # I S i , the housing
lottery is obtained as follows:

1. Every existing tenant i # IE who announces Out is assigned his or
her current house hi with certainty.

2. Let J=IN _ [i # IE : si1=In] and G=HV _ [hi # HO : si1=In].
That is, J consists of the set of new applicants together with the existing
tenants who announce In and G consists of vacant houses plus the houses
of existing tenants who announce In.

(a) An ordering f of agents in J is randomly chosen from a given
distribution of orderings.

(b) Houses in G are assigned to these agents based on the serial
dictatorship induced by f under the announced preferences.

In everyday language, those existing tenants who want to move to another
house need to give up their houses and join the group of new applicants
while their houses are added to the pool of vacant houses.

In many cases (for example at Duke and some of the residences at
Pennsylvania) the lottery favors the existing tenants over the newcomers.
In such cases the mechanism is implemented as follows: Existing tenants
who want to move give up their houses. These houses are added to the
pool of vacant houses. Existing tenants who give up their houses are
randomly ordered with a lottery and the induced serial dictatorship is used
to determine their assignments. Next an ordering of the new applicants is
randomly chosen with another lottery and the remaining houses are
allocated among the new applicants based on the induced serial dictator-
ship. In many cases this second step is carried out several months after the
first one.

While the random serial dictatorship with squatting rights is very popular,
it suffers a major deficiency: Since it does not guarantee each existing
tenant a house that is at least as good as his own, some of them may
choose to stay Out (i.e., use their squatting rights), and this may result in
the loss of potentially large gains from trade. So in most cases the eventual
house allocation is Pareto inefficient.10

We could find only two mechanisms which gives the existing tenants the
right to keep their current houses without imposing them to opt out. They
are the random serial dictatorship with waiting list and the MIT�NH4

mechanism.
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4.2. Random Serial Dictatorship with Waiting List
The random serial dictatorship with waiting list is used for graduate

housing at Rochester. It is a direct mechanism and thus agents announce
their preferences over all houses. For a given ordering f of agents, the out-
come is obtained as follows:

Define the set of available houses for Step 1 to be the set of vacant
houses. Define the set of acceptable houses for agent i to be the set of all
houses in case agent i is a new applicant, and the set of all houses better
than his or her current house hi in case he or she is an existing tenant.

Step 1. The agent with the highest priority among those who have at
least one acceptable available house is assigned his or her top available
house and removed from the process. His or her assignment is deleted from
the set of available houses for Step 2. In case he or she is an existing tenant,
his or her current house becomes available for Step 2. If there is at least
one remaining agent and one available house that is acceptable to at least
one of them, then we go to the next step.

b b

Step t. The set of available houses for Step t is defined at the end of
Step t&1. The agent with the highest priority among all remaining agents
who has at least one acceptable available house is assigned his or her top
available house and removed from the process. His or her assignment is
deleted from the set of available houses for Step t+1. In case he or she is
an existing tenant, his or her current house becomes available for Step
t+1. If there is at least one remaining agent and one available house that
is acceptable to at least one of them, then we go to the next step.

When the process terminates, those existing tenants who are not
re-assigned keep their current houses.

This variant of the random serial dictatorship is also inefficient. Consider
the following example.

Example 2. Let IE=[i1 , i2 , i3], IN=<, HO=[h1 , h2 , h3], and HV=
[h4]. Here the existing tenant ik occupies the house hk for k=1, 2, 3. Let
the agents be ordered as i1�i2�i3 and let the preferences (from best to
worst) be as follows:

Pi1
Pi2

Pi3

h2 h3 h1

h3 h1 h4

h1 h2 h3

h4 h4 h2

h0 h0 h0
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Let us find the outcome of the random serial dictatorship with waiting list:

Step 1. The only available house at Step 1 is house h4 . It is acceptable
to only agent i3 . So, agent i3 is assigned house h4 .

Step 2. The only available house at Step 2 is house h3 . It is acceptable
to both agent i1 and agent i2 . Since agent i1 has the higher priority, agent
i1 is assigned house h3 .

Step 3. The only available house at Step 3 is house h1 . It is acceptable
to agent i2 . So agent i2 is assigned house h1 .

Since there are no remaining agents at the end of Step 3, the process
terminates and the final matching is

\ i1

h3

i2

h1

i3

h4 +
which is Pareto dominated by

\ i1

h2

i2

h3

i3

h1 +
4.3. MIT�NH4 Mechanism

The following mechanism is used at the residence NH4 of MIT. It works
as follows:

1. An ordering f of agents is chosen from a given distribution of agents.

2. The first agent is tentatively assigned his or her top choice among
all houses, the next agent is tentatively assigned his top choice among the
remaining houses, and so on, until a squatting conflict occurs.

3. A squatting conflict occurs if it is the turn of an existing tenant but
every remaining house is worse than his or her current house. That means
someone else, the conflicting agent, is tentatively assigned the existing
tenant's current house. When this happens

(a) the existing tenant is assigned his or her current house and
removed from the process, and

(b) all tentative assignments starting with the conflicting agent and
up to the existing tenant are erased.

At this point the squatting conflict is resolved and the process starts over
again with the conflicting agent. Every squatting conflict that occurs
afterwards is resolved in a similar way.

4. The process is over when there are no houses or agents left. At this
point all tentative assignments are finalized.
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While it is innovative, the MIT�NH4 mechanism does not resolve the
inefficiency problem.11

Example 3. Let IE=[i1 , i2 , i3 , i4], IN=[i5], HO=[h1 , h2 , h3 , h4],
and HV=[h5]. Here the existing tenant ik occupies the house hk for
k=1, 2, 3, 4. Let the ordering f order the agents as i1�i2�i3�i4�i5 and let
the preferences be as follows:

Pi1
Pi2

Pi3
Pi4

Pi5

h3 h4 h5 h3 h4

h4 h5 h3 h5 h5

h5 h2 h4 h4 h3

h1 h3 h2 h2 h1

h2 h1 h1 h1 h2

h0 h0 h0 h0 h0

Let us find the outcome of the MIT�NH4 mechanism:

1. First agent i1 is tentatively assigned h3 , next agent i2 is tentatively
assigned h4 , next agent i3 is tentatively assigned h5 , and next its agent i4 's
turn and a squatting conflict occurs. The conflicting agent is agent i2 who
was tentatively assigned h4 . Agent i2's tentative assignment, as well as that
of agent i3 , is erased. Agent i4 is assigned his or her current house h4 and
removed from the process. This resolves the squatting conflict.

2. The process starts over with the conflicting agent i2 . Agent i2 is
tentatively assigned h5 and next it is agent i3 's turn and another squatting
conflict occurs. The conflicting agent is agent i1 who was tentatively
assigned h3 . His tentative assignment, as well as that of agent i2 are erased.
Agent i3 is assigned his current house h3 and removed from the process.
This resolves the second squatting conflict.

3. The process starts over with the conflicting agent i1 . He is
tentatively assigned h5 , next agent i2 is tentatively assigned h2 and finally
agent i5 is tentatively assigned h1 . At this point all tentative assignments
are finalized.

Therefore the final matching is

\ i1

h5

i2

h2

i3

h3

i4

h4

i5

h1 +
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which is Pareto dominated by both

\ i1

h3

i2

h2

i3

h5

i4

h4

i5

h1+ and \ i1

h4

i2

h2

i3

h5

i4

h3

i5

h1 +

5. TOP TRADING CYCLES MECHANISM

We are now ready to introduce a class of direct matching mechanisms.
We then use these matching mechanisms to propose a class of lottery
mechanisms. Fix an ordering f of agents. This order indicates seniority or
priority of the agents. If there is a natural priority of the agents involved,
one can directly use the following mechanism. Otherwise an ordering can
be randomly selected from an exogenous distribution of orderings. For any
announced preference profile Q, we find the matching selected by the top
trading cycles mechanism with the following top trading cycles algorithm.12

Step 1. Define the set of available houses for this step to be the set of
vacant houses. Each agent i points to his or her favorite house under his
or her announced preference Qi , each occupied house points to its occupant,
and each available house points to the agent with highest priority (i.e.,
agent f (1)). Since the numbers of agents and houses are finite, there is at
least one cycle. (A cycle is an ordered list of agents and houses ( j1 , j2 , ...,
jk) where j1 points to j2 , j2 points to j3 , ..., jk points to j1). Every agent
who participates in a cycle is assigned the house that he or she points to
and removed with his or her assignment. (Clearly all such agents are
assigned their most preferred houses.) Note that whenever there is an
available house in a cycle, the agent with the highest priority, i.e., agent
f (1), is also in the same cycle. If this agent is an existing tenant, then his
or her house hf (1) cannot be in any cycle and it becomes available for
Step 2. All available houses that are not removed remain available. If there
is at least one remaining agent and one remaining house then we go to the
next step.

b b

Step t. The set of available houses for Step t is defined at the end of
Step t&1. Each remaining agent i points to his or her favorite house among
the remaining houses under his or her announced preference Qi , each remain-
ing occupied house points to its occupant, and each available house points
to the agent with highest priority among the remaining agents. There is at
least one cycle. Every agent in a cycle is assigned the house that he or she

245HOUSE ALLOCATION WITH EXISTING TENANTS

12 Papai [13] independently introduces a similar class of mechanisms in the context of
house allocation problems.



points to and removed with his assignment. If there is an available house
in a cycle then the agent with the highest priority in this step is also in the
same cycle. If this agent is an existing tenant, then his or her house cannot
be in any cycle and it becomes available for Step t+1. All available houses
that are not removed remain available. If there is at least one remaining
agent and one remaining house then we go to the next step.

By the finiteness of the numbers of agents and houses at least one cycle
forms at each step. Hence this algorithm terminates in at most min[ |I |, |H|]
steps. Any agent who is not assigned a house at the termination is assigned
the null house h0 (i.e., remains unmatched).

Remark 1. We indicated that at each step of the top trading cycles
algorithm there is at least one cycle and each of them should be removed.
Nevertheless, if one removes one cycle at a step, the outcome is still the
same. This is because a cycle that is not removed at any step remains a
cycle at the next step.

When there are no new applicants and no vacant houses this algorithm
reduces to the celebrated Gale's top trading cycles algorithm.13 Our algo-
rithm is very much inspired by Gale's algorithm. On the other hand, when
there are no existing tenants it reduces to the serial dictatorship induced by f.

5.1. An Example

In this section we give a detailed example in order to illustrate the
dynamics of the top trading cycles algorithm.

Let IE=[i1 , i2 , i3 , i4], IN=[i5], HO=[h1 , h2 , h3 , h4], and HO=
[h5 , h6 , h7]. Here the existing tenant ik occupies the house hk for k=
1, ..., 4. Let the ordering f order the agents as i1�i2 �i3�i4 �i5 and let the
preferences be as follows:

Pi1
Pi2

Pi3
Pi4

Pi5

h2 h7 h2 h2 h4

h6 h1 h1 h4 h3

h5 h6 h4 h3 h7

h1 h5 h7 h6 h1

h4 h4 h3 h1 h2

h3 h3 h6 h7 h5

h7 h2 h5 h5 h6

h0 h0 h0 h0 h0
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Step 1.

The set of available houses in Step 1 is HV=[h5 , h6 , h7]. The only cycle
that is formed at this step is (i1 , h2 , i2 , h7). Therefore i1 is assigned h2 and
i2 is assigned h7 .

Step 2.

Since agent i1 leaves in Step 1, house h1 becomes available in Step 2. There-
fore the set of available houses for Step 2 is [h1 , h5 , h6]. The available
houses h1 , h5 , and h6 all point to agent i3 , now the highest ranking agent.
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There are two cycles (i3 , h1) and (i4 , h4). Therefore i3 is assigned h1 and i4

is assigned his or her own house h4 .

Step 4.

Since i3 leaves in Step 2, house h3 becomes available for Step 3. Therefore
the set of available houses for Step 3 is [h3 , h5 , h6]. The available houses
h3 , h5 , and h6 all point to the only remaining agent i5 . The only cycle is
(i5 , h3). Therefore i5 is assigned h3 . There are no remaining agents so the
algorithm terminates and the matching it induces is:

\ i1

h2

i2

h7

i3

h1

i4

h4

i5

h3+
5.2. Efficiency, Individual Rationality, and Strategy-Proofness

For any ordering f, the induced top trading cycles mechanism . f has
some very desirable properties. In particular it is

1. Pareto efficient,

2. individually rational, and

3. strategy proof.

The significance of the first two properties is clear. Strategy-proofness is
also crucial since in its absence agents may attempt to manipulate by
reporting fake preferences. If they do, the resulting matching is efficient
under announced preferences but not necessarily under the true preferences.
We next prove these properties.

Proposition 1. For any ordering f, the induced top trading cycles
mechanism . f is Pareto efficient.

Proof. Consider the top trading cycles algorithm. Any agent who leaves
at Step 1 is assigned his or her top choice and cannot be made better off.
Any agent who leaves at Step 2 is assigned his or her top choice among
those houses remaining at Step 2 and since the preferences are strict he or
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she cannot be made better off without hurting someone who left at Step 1.
Proceeding in a similar way, no agent can be made better off without
hurting someone who left at an earlier step. Therefore the mechanism . f is
Pareto efficient. K

Remark 2. The criticism of the mechanisms described in Section 4 is
not that their outcomes are necessarily Pareto inefficient, but that they can
be Pareto inefficient at some preference profiles for some orderings of the
agents. The top trading cycles mechanism, in contrast, has the advantage
that its outcome is Pareto efficient at every preference profile regardless of
the ordering of the agents.

Proposition 2. For any ordering f, the induced top trading cycles
mechanism . f is individually rational.

Proof. Consider the top trading cycles algorithm. For any existing
tenant i # IE , his or her house hi points to him or her until he or she leaves.
Therefore the assignment of i cannot be worse than his endowment hi . K

Our next result is a generalization of a similar result in Roth [14] who
shows strategy-proofness for the special case of housing markets.14 The
following lemma is the key to our proof.

Lemma 1. Fix the announced preferences of all agents except i at Q&i=
(Qj) j # I"[i] . Suppose that in the top trading cycles algorithm agent i leaves at
Step T under Qi and at Step T* under Qi*. Suppose T�T*. Then the
remaining agents and houses at the beginning of Step T are the same whether
agent i announces Qi or Qi*.

Proof. Since agent i fails to participate in a cycle prior to Step T in
either case, the same cycles form and therefore the same agents and houses
leave before Step T. K

Theorem 1. For any ordering f, the induced top trading cycles mechanism
. f is strategy proof.

Proof. Consider an agent i with true preferences Pi . Fix an announced
preference profile Q&i=(Qj)j # I"[i] for every agent except i. We want to
show that revealing his or her true preferences Pi is at least as good as
announcing any other preferences Qi . Let T be the step at which agent i
leaves under Qi , let (h, j1 , j2 , ..., jk , i) be the cycle i joins, and thus
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house h be i 's assignment. Let T* be the step at which i leaves under his
or her true preferences Pi . We want to show that i 's assignment under Pi

is at least as good as house h. We have two cases to consider.

Case 1. T*�T.
Suppose agent i announces his or her true preferences Pi . Consider

Step T. By Lemma 1, the same agents and houses remain in the market at
the beginning of this step whether agent i announces Qi or Pi . Therefore
at Step T, house h points to agent j1 , agent j1 points to house j2 , ..., house
jk points to agent i. Moreover, they keep doing so as long as agent i
remains. Since agent i truthfully points to his or her best choice at each
step, i either receives a house that is at least as good as h or eventually
joins the cycle (h, j1 , j2 , ..., jk , i) and receives house h.

Case 2. T*<T.
By Lemma 1 the same houses remain in the market at the beginning of

Step T* whether agent i announces Qi or Pi . Moreover, agent i is assigned
his or her best choice remaining at Step T* under Pi . Therefore, in this
case too i 's assignment under the true preferences Pi is at least as good as
house h. K

5.3. Respecting Seniority

There are many applications where agents are naturally ordered based
on their seniority. Let f denote this ordering. We earlier suggested that in
such applications one can use the top trading cycles mechanism . f. We
next justify this suggestion.

In order to simplify the exposition we refer to any mechanism that is
Pareto efficient, individually rational, and strategy-proof as an admissible
mechanism. Before committing to mechanism . f, one should ask the
following question: Is there another admissible mechanism that always
better respects the seniority of the agents? The answer to this question is
negative. Suppose that for some preference profile an admissible mechanism .
assigns an agent a better house than . f does. Then one can construct a
preference profile in which an agent with higher seniority is worse off under
. than he or she is under . f.

Theorem 2. Let . be a mechanism that is Pareto efficient, individually
rational, and strategy-proof. Then for all t # [1, ..., |I |],

[_P # P such that .f (t)(P) Pf (t) . f
f (t)(P)]

O [_P� # P and s<t such that . f
f (s)(P� ) P� f (s).f (s)(P� )].

(See the Appendix for a proof.)
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An alternative way to read Theorem 2 is as follows: As far as agent f (1)
is concerned, the mechanism . f assigns him a house that is at least as good
as the assignment of any admissible mechanism at all preference profiles.
Next consider all admissible mechanisms that perform equally well for
agent f (1). (Equivalently consider all admissible mechanisms that agree
with mechanism . f on the assignment of agent f (1) at every preference
profile.) The mechanism . f assigns agent f (2) a house that is at least as
good as the assignment of any such mechanism at all preference profiles. In
general, consider all admissible mechanisms that perform equally well for
agents f (1), f (2), ..., f (k) where k<|I |. The mechanism . f assigns agent
f (k+1) a house that is at least as good as the assignment of any such
mechanism at all preference profiles.

5.4. An Alternative Algorithm

We can find the outcome of the top trading cycles mechanism using the
following you request my house��I get your turn (or in short YRMH�IGYT)
algorithm: For any given ordering f, assign the first agent his or her top
choice, the second agent his or her top choice among the remaining houses,
and so on, until someone demands the house of an existing tenant. If at
that point the existing tenant whose house is demanded is already assigned
a house, then do not disturb the procedure. Otherwise modify the remain-
der of the ordering by inserting him to the top and proceed. Similarly,
insert any existing tenant who is not already served at the top of the line
once his or her house is demanded. If at any point a loop forms, it is
formed by exclusively existing tenants and each of them demands the house
of the tenant next in the loop. (A loop is an ordered list of agents (i1 , i2 , ..., ik)
where agent i1 demands the house of agent i2 , agent i2 demands the house
of agent i3 , ..., agent ik demands the house of agent i1 .) In such cases
remove all agents in the loop by assigning them the houses they demand
and proceed.

Note that if there is only one existing tenant, YRMH�IGYT algorithm
reduces to the algorithm we defined in Section 2.1.

Theorem 3. For a given ordering f, the YRMH�IGYT algorithm yields
the same outcome as the top trading cycles algorithm.

Proof. For any set J of agents and set G of houses remaining in the
algorithm, YRMH�IGYT algorithm assigns the next series of houses in one
of two possible ways.

Case 1. There is a sequence of agents i1 , i2 , ..., ik (which may consist of
a single agent) where agent i1 has the highest priority in J and demands
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house of i2 , agent i2 demands house of i3 , ..., agent ik&1 demands house of
ik , and ik demands an available house h. At this point agent ik is assigned
house h, the next agent ik&1 is assigned house hik

(which just became
available),..., and finally agent i1 is assigned house hi2

. Note that the
ordered list (h, i1 , hi2

, i2 , ..., hik
, ik) is a (top trading) cycle for the pair (J, G).

Case 2. There is a loop (i1 , i2 , ..., ik) of agents. When that happens
agent i1 is assigned the house of i2 , agent i2 is assigned house of i3 , ..., agent
ik is assigned house of i1 . In this case (hi1

, i1 , h i2
, i2 , ..., hik

, ik) is a (top
trading) cycle for the pair (J, G).

Hence the YRMH�IGYT algorithm locates a cycle and implements the
associated trades for any sets of remaining agents and houses. This obser-
vation together with Remark 1 implies the desired result. K

The two algorithms have different merits and hence we consider both of
them to be useful: It is easier to see how the top trading cycles algorithm
works and its use makes the results in the previous sections easier to prove.
The YRMH�IGYT algorithm, on the other hand, has an intuitive inter-
pretation and also it can be coded on computer as it is.

5.5. Top Trading Cycles Mechanisms from Random Orderings

Next we propose a class of lottery mechanisms: Randomly choose an
ordering from any exogenous distribution of orderings and use the induced
top trading cycles mechanism. We refer to this class as top trading cycles
mechanisms from random orderings. In some applications one may want to
favor a group of agents (such as existing tenants) over another (such as
new applicants). In other applications, favoring one group or another may
not be appropriate. This class of lottery mechanisms is rich enough to
accomodate any form of priorities. Moreover, since orderings are drawn
from exogenous distributions, they are ex post individually rational, ex
post Pareto efficient, and strategy proof. We state this observation as a
corollary.

Corollary 1. Any top trading cycles mechanism from random orderings
is ex post individually rational, ex post Pareto efficient, and strategy-proof.

Proof. Immediate from Propositions 1, 2 and Theorem 1.

Remark 3. When the ordering f favors the existing tenants, these agents
leave before every new applicant in the algorithm. Once they do, the algo-
rithm reduces to a serial dictatorship. Therefore in such applications the
mechanism can be used at two different points in time; first for the existing
tenants and next for the new applicants.

252 ABDULKADIROG2 LU AND SO� NMEZ



6. EXTENSIONS

There are two assumptions in our model that seem to limit the practical
significance of our results:

1. The null house h0 is assumed to be the last choice for all agents.
While this assumption is natural for some applications (such as office space
allocation for faculty), it may not be so natural in others. For example, a
student may prefer off-campus housing to some on-campus houses. Moreover,
some students may not even be eligible for some on-campus houses.

2. In many real-life applications there are several types of housing
and agents have preferences over types of houses rather than houses
themselves. By assuming strict preferences, we rule out such applications.

Nevertheless, these assumptions are made merely to simplify the notation
and the exposition. Both assumptions can be dropped and our proposed
mechanisms can be naturally extended to accommodate these more general
models. We do this in Sections 6.1 and 6.2.

Another generalization that deserves attention is one that allows for
consumption externalities. We discuss some difficulties associated with such
a model in Section 6.3.

6.1. What If the Null House Is Not the Last Choice?

Suppose the null house h0 is not necessarily the last choice. In this case,
for any given ordering f, we can modify the top trading cycles algorithm
as follows: Introduce a personalized null house h0i for each agent i. (It
represents the no-house option for agent i). In the modified algorithm, each
personalized null house h0i points to agent i until he or she leaves the
market. At this step the null house h0i leaves the market as well. Everything
else stays the same in the algorithm. Note that if at any step a personalized
null house h0i is in a cycle, this cycle should be (i, h0i). In this case, agent
i prefers the null house to every remaining house and leaves the market
without being assigned to a real house.

6.2. What If There Are Multiple Units of a Housing Type?

Suppose there are several types of housing and agents have preferences
over types of housing rather than over houses. We assume that agents are
indifferent between houses of the same type and they have strict preferences
over types of houses. Since we need strict preferences in the top trading
cycles algorithm, we will use a tie-breaking rule to eliminate these indif-
ferences. Fortunately there is a natural tie-breaking rule in this context.
Given any such preference profile R and ordering f of agents, construct a
strict preference profile P as follows: For any agent i,
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1. given two houses of different types, the house of the better type
(under Ri) is strictly preferred under Pi ,

2. given two houses of the same type,

(a) if both houses are occupied then the house with the more
senior owner (under f ) is strictly preferred under Pi ,

(b) if one is occupied and the other is vacant, then the occupied
house is strictly preferred under Pi , and

(c) if both houses are vacant then the house with the lower index
is preferred.

(This last case may look arbitrary but it is inessential since all vacant
houses point to the same agent in the top trading cycles algorithm.)

Once the tie-breaking is handled the top trading cycles mechanism can
be used.

6.3. What About Allowing for Consumption Externalities?

Suppose that agents not only care for their houses, but also for their
neighbors, where their friends live, etc. Then one needs to allow for con-
sumption externalities. Without adding additional structure in the model,
all that can be done is allowing for any preference relation over the set of
matchings. But such a model is formally equivalent to abstract models
analyzed by Gibbard [6, 7] and Satterthwaite [19]. Therefore the only
matching rules that are strategy-proof and Pareto efficient are dictatorial
rules (Gibbard [6] and Satterthwaite [19]). Moreover the only lottery
rules that are strategy-proof and ex post Pareto efficient are convex
combinations of dictatorial rules (Gibbard [7]).

Another difficulty in a model with consumption externalities is formulat-
ing the individual rationality condition: While existing tenants have prior
claims for their houses, this itself does not determine their welfare level in
a model with consumption externalities.

A. APPENDIX: PROOF OF THEOREM 2

Let . be a mechanism that is Pareto efficient, individually rational, and
strategy-proof. We want to show that, for all t # [1, ..., |I |],

[_P # P s.t. .f (t)(P) Pf (t) . f
f (t)(P)]

O [_P� # P and s<t s.t. . f
f (s)(P� ) P� f (s).f (s)(P� )] (1)

We proceed by induction. Label agents so that it= f(t) for all t # [1, ..., |I |].

Claim 1. \P # P, . f
i1

(P) Ri1
.i1

(P).
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Proof of Claim 1. Suppose on the contrary that there exists P # P such
that .i1

(P) Pi1
. f

i1
(P). Denote +=. f (P) and h*=. i1

(P). Then we have
h*Pi1

+(i1). Let J be the set of agents who leave the top trading cycles
algorithm before agent i1 under P. Similarly let G be the set of houses that
leave the algorithm before agent i1 . Recall that all vacant houses point to
agent i1 as long as he or she is in the market. Therefore J�IE and

G=[g # H : _j # J such that g=hj]=[g # H : _j # J such that g=+( j)] (2)

That is because the only way agents in J leave the market before agent i1

is by trading among themselves. Moreover,

\j # J, \H"G, +( j) Pj h (3)

for otherwise agent j would not leave the market before house h does.
Finally note that it is only houses in G that can be better for agent i1 than
his or her assignment +(i1). Therefore

h* # G. (4)

For all j # J, let P$j # P be such that

\h # H"[+( j), hj], +( j) R$j hjP$jh. (5)

Since the mechanism . is individually rational, we have .j (PN"J , P$J) #
[+( j), hj] for all j # J and therefore

.
j # J

.j (PN"J , P$J)= .
j # J

[+( j), hj]=G (6)

by relation (2). This, together with the Pareto efficiency of ., implies that

\j # J, .j (PN"J , P$J)=+( j). (7)

Let 7=[_t] |J |!
t=1 be the set of all orderings of J where _t(s) is the agent

who is sth in ordering _t . For any _ # 7, construct the following sequence
of preference profiles:

P0(_)=(PN"J , P$_(1) , ..., P$_( |J | ))=(PN"J , P$J)

P1( _)=(PN"J , P_(1) , P$_(2) , ..., P$_( |J | ))

b b

P |J |&1(_)=(PN"J , P_(1) , ..., P_( |J |&1) , P$_( |J | ))

P |J |(_)=(PN"J , P_(1) , ..., P_( |J | )=P.
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Consider any ordering _ # 7. Recall that i1 � J by construction, h* # G by
relation (4), and h*=.i1

(P)=.i1
(P |J |(_)) by construction. Moreover

�j # J .j (P0(_))=G by relation (6). Therefore, while all houses in G are
assigned to agents in J by the mechanism . under P0(_), the same is not
true under P |J |(_)=P. Let Pn(_)(_) be the first member of the sequence
P0(_), P1(_), ..., P |J |(_) under which an agent in J is assigned a house that
is not in G by the mechanism .. Note that 1�n(_)�|J | for all _ # 7.

We do not choose an arbitrary ordering. Pick an ordering _* # 7 with

n(_*)=min
_ # 7

n(_)

Note that such an ordering does not need to be unique. By the definition
of n(_*),

_k # J and h # H"G such that .k(Pn(_*)(_*))=h. (8)

Moreover relation (5), together with the individual rationality of ., ensures
that Pn(_*)

k (_*)=Pk . That is, agent k # J should be revealing the preference
relation Pk under the profile Pn(_*)(_*). Now suppose agent k announces
the preference relation P$k instead. That is, consider the preference profile
(Pn(_*)

&k (_*), P$k). Note that the number of agents in J revealing the preference
relation Pj (rather than P$j) is n(_*)&1 under this profile. Therefore
minimality of n(_*) ensures

.
j # J

.j (Pn(_*)
&k (_*), P$k)=G

and this together with Pareto efficiency of . ensures

\j # J, .j (Pn(_*)
&k (_*), P$k)=+( j).

In particular, this is true for agent k # J:

.k(Pn(_*)
&k (_*), P$k)=+(k). (9)

Relations (3), (8), and (9) imply

.k(Pn(_*)
&k (_*), P$k) Pk .k (P&k

n(_*)(_*), Pk)

Pn(_*) (_*)

,

contradicting the strategy-proofness of .. This completes the proof of
Claim 1.
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Claim 2. Let l�|I | and suppose relation (1) holds for all t # [1, ..., l&1].
Then relation (1) holds for t=l as well.

Proof of Claim 2. Suppose relation (1) holds for all t # [1, ..., l&1]
but not for t=l. Then there exists a preference profile P # P such that
_il

(P) Pil
. f

il
(P) and

\P� # P, \t # [1, ..., l&1], .it
(P� ) R� it

. f
it
(P� ). (10)

If there exists P� # P and t # [1, ..., l&1] such that .it
(P� ) P� it

. f
it
(P� ), then by

the induction hypothesis there exists P* # P and s<t�l&1 such that
. f

is
(P*) P*is .is

(P*) contradicting relation (10). Therefore

\P� # P, \t # [1, ..., l&1], .it
(P� )=. f

it
(P� ). (11)

Denote +=. f (P) and h*=.il(P). Let J be the set of agents who leave the
top trading cycles algorithm before agent il under P. Similarly let G be
the set of houses that leave the algorithm before agent il . Define J1=
J"[i1 , ..., il&1]. Note that no agent in IN , unless he or she is a member of
[i1 , ..., il&1], can leave the market before agent il . Therefore J1 �IE . We
also have

\j # J1 , hj # G, (12)

for otherwise agent j could not form a cycle before agent il left the market.
Moreover,

\j # J, \h # H"G, +( j) Pjh, (13)

for otherwise agent j would not leave the market before house h did.
Finally note that it is only houses in G that can be better for agent il than
his or her assignment +(il). Therefore

h* # G. (14)

For all j # J1 , let P$j # P be such that

\h # H"[+( j), hj], +( j) R$j hjP$jh. (15)

Observe that . f (PN"J1 , P$J1)=. f (P)=+. Therefore by relation (11) we
have

\i # [i1 , ..., il&1], .i(PN"J1
, P$J1

)=. f
i (PN"J1

, P$J1
)=. f

i (P)=+(i)
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which in turn implies

\j # J"J1 , .j (PN"J1
, P$J1

)=+( j) (16)

for J"J1 �[i1 , ..., il&1]. Moreover, individually rationality of . implies

\j # J1 , .j (PN"J1
, P$J1

) # [+( j), hj], (17)

by relation (15). Since +( j) # G for all j # J, relations (12), (16), and (17)
imply �j # J .j (PN"J1

, P$J1
)�G. But since |J |=|G|, we indeed have

.
j # J

.j (PN"J1
, P$J1

)=G. (18)

Pareto efficiency of ., together with relations (16) and (18), implies that

\j # J, .j (PN"J1
, P$J1

)=+( j). (19)

Let 6=[?t]
|J1 |!
t=1 be the set of all orderings of J1 where ?t(s) is the agent

who is sth in ordering ?t . For any ? # 6, construct the following sequence
of preference profiles:

P0(?)=(PN"J1
, P$?(1) , ..., P$?( |J1 | ))=(PN"J1

, P$J1
)

P1(?)=(PN"J1
, P?(1) , P$?(2) , ..., P$?( |J1 | ))

b b

P |J1 |&1(?)=(PN"J1
, P?(1) , ..., P?( |J1 |&1) , P$?( |J1 | ))

P |J1 |(?)=(PN"J1
, P?(1) , ..., P?( |J1 | ))=P.

Note that . f (Pk(?))=. f (P)=+ for all k # [0, ..., |J1|]. Therefore relation
(11) together with the relation J"J1 �[i1 , ..., il&1] implies

\j # J"J1 , \k # [0, ..., |J1|], .j (Pk(?))=+( j) # G. (20)

Recall that il � J by construction h* # G by relation (14), and h*=.il
(P)

=.il
(P |J1 |(?)) by construction. Moreover �j # J .j (P0(?))=G by relation

(18). That is, while all houses in G are assigned to agents in J by the
mechanism . under P0(?), the same is not true under P |J1 |(?)=P. Let
Pn(?)(?) be the first member of the sequence P0(?), P1(?), ..., P |J1 |(?) under
which an agent in J is assigned a house that is not in G by the mechanism
.. We have 1�n(?)�|J1| for all ? # 6.

Now pick an ordering ?* # 6 with

n(?*)=min
? # 6

n(?).
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By the definition of n(?*),

_k # J and h # H"G such that .k(Pn(?*)(?*))=h. (21)

Indeed, relation (20) implies that k # J1 . Moreover, relation (13) together
with the individual rationality of . ensures that Pn(?*)

k (?*)=Pk . That is,
agent k # J1 should be revealing the preference relation Pk under the profile
Pn(?*)(?*).

Now suppose agent k announces the preference relation P$k instead. That
is, consider the preference profile (Pn(?*)

&k (?*), P$k). The number of agents in
J1 revealing the preference relation Pj (rather than P$j) is n(?*)&1 under
this profile. Therefore minimality of n(?*) ensures that

.
j # J

.j (Pn(?*)
&k (?*), P$k)=G

and this together with relation (20) and Pareto efficiency of . ensures that

\j # J, .j(Pn(?*)
&k (?*), P$k)=+( j).

In particular, this is true for agent k # J:

.k(Pn(?*)
&k (?*), P$k)=+(k). (22)

Relations (13), (21), and (22) imply

.k(Pn(?*)
&k (?*), P$k) Pk.k (P&k

n(?*)(?*), Pk

Pn(?*)(?*)

),

contradicting strategy-proofness of . and completing the proof of Claim 2.

Claims 1 and 2, complete the proof. K
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