
Ecoiornetrica, Vol. 66, No. 3 (May, 1998), 689-701 

NOTES AND COMMENTS 

RANDOM SERIAL DICTATORSHIP AND THE CORE FROM 

RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS 

BY ATILA ABDULKADIRO6LU AND TAYFUN SONMEZ 

1. INTRODUCTION 

WHEN A COLLEGE GRADUATE decides to pursue a higher degree at a particular institution, 
one of the first challenges she faces is finding an apartment. Most institutions have 
on-campus housing available that is often subsidized and hence more appealing than its 
alternatives. Usually there are several types of on-campus housing and the attractiveness 
of each type changes from person to person. Therefore housing offices need to find 
44mechanisms" to allocate available housing among the applicants who might have various 
preferences. In this paper we deal with this class of problems to which we refer as house 
allocation problems.2 Formally, there are n agents who collectively own n indivisible 
objects, say houses, and each agent has preferences over objects.3 An allocation is a 
matching of houses to agents and a matching mechanism is a systematic procedure to 
select a matching for each problem. A widely studied class of matching mechanisms is the 
class of simple serial dictatorships: For a given ordering of agents, the agent who is 
ordered first is assigned her top choice, the agent ordered second is assigned her top 
choice among the remaining houses, and so on. These matching mechanisms are not 
considered very desirable as they discriminate between the agents. However this difficulty 
can be handled by randomly determining an ordering and using the induced simple serial 
dictatorship. We refer to this mechanism as the random serial dictato;-ship. Of course this 
mechanism selects lotteries over matchings instead of matchings and we refer to such 
mechanisms as lottery mechanisms. 

Our first contribution is the introduction of a (seemingly) alternative lottery mecha- 
nism. For this purpose we need to introduce a related class of problems, namely the 

'We are grateful to an editor, William Thomson, and three anonymous referees for their 
extensive comments. We would like to thank Ted Bergstrom, Jim Dearden, Matt Jackson, Tarnk 
Kara, Hideo Konishi, Al Roth, Nejat Seyhun, seminar participants at the University of Michigan, 
University of Rochester, and 1997 North American Meeting of the Econometric Society at New 
Orleans for their helpful remarks. The second author gratefully acknowledges the research support 
of the National Science Foundation via Grant Number SBR-9709138. All errors are our own 
responsibility. 

2See Hylland and Zeckhauser (1979) and Zhou (1990). 
3In most real life applications houses are scarce. For instance, it is not possible to accommodate 

all graduate students with on-campus housing. Therefore it is important to deal with the model 
where there are more agents than houses. Our results extend to this case in a direct way given that 
agents prefer having any house to having nothing at all. In most applications agents can forgo their 
assignments and hence this assumption will be satisfied. 
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housing markets (Shapley and Scarf (1974)).4 This class differs from house allocation 
problems in only one point: In house allocation problems agents collectively own a set of 
houses whereas in the housing markets each agent owns a particular house. Roth and 
Postlewaite (1977) show that whenever preferences are strict, there is a unique matching 
in the core of each housing market, and moreover this matching coincides with the 
unique competitive allocation. The following mechanism is a counterpart to the core in 
the context of house allocation problems: For each house allocation problem randomly 
choose an endowment matching with uniform distribution, and select the core (or 
equivalently the competitive allocation) of the induced housing market. We refer to this 
mechanism as the core from random endowments. Our main result is that the core from 
random endowments is equivalent to the random serial dictatorship. That is, for all house 
allocation problems both mechanisms select precisely the same lottery over matchings 
and thus they are two different formulations of the same lottery mechanism. 

Our analysis has two by-products that may be of independent interest. First, we 
develop some tools associated with Gale's top trading cycles algorithm (the algorithm that 
determines the unique matching in the core of a housing market), that improve our 
understanding of it and are essential for the proof of our main result. We believe that 
these tools might be useful in other applications. Second, we obtain a characterization of 
Pareto efficient matching mechanisms: A matching mechanism is Pareto efficient if and 
only if it is a serial dictatorship (Satterthwaite and Sonnenschein (1981)). 

2. BASIC MODELS 

2.1. House Allocation Problems 

Consider the following class of problems: there is a group of n agents who collectively 
own n indivisible objects, say houses. Each agent has use for one and only one house and 
each agent has preferences over the set of houses. Formally, a house allocation problem is 
a triple (A, H, P). The first component A = {a1, a2,.. -, a,,} is a finite set of agents. The 
second component H = {h1, h2, . .. , hn} is a finite set of houses. Note that IAl = IHI = n. 
The last component P = (Pal, P "Pan) is a list of preference relations, each prefer- 
ence relation being a strict preference on the set of houses H. Let Ra denote the "at 
least as good as" relation associated with the preference relation Pa for all a EcA. That 
is, for all h, h' E H we have hRah' if and only if hPah' or h = h'. Throughout the paper 
we fix A, H, P and suppress them whenever we can so as to simplify the notation. 

The choice Xa(H') of an agent a EA from a set of houses H' cH is the best house 
among H'. That is, 

Xa(H') = h' h' c H' and h'Pah for all h c H'\{h'}. 

A (house) matching p, is a bijection from A to H. For all a EA, we refer to ,uI(a) as 
the assignment of agent a under ,u/. Let X be the set of all matchings. Note that there 
are n! matchings, that is 1//I = n!. 

Agent a's preference relation Pa initially defined over H, is extended to the set of 
matchings in the following natural way: agent a prefers the matching Pt to the matching 
pt' if and only if he prefers his assignment under p, to his assignment under pt'. We 
slightly abuse the notation and also use Pa to denote this extension. 

4See Moulin (1995) for an extensive analysis of housing markets. 
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A matching ,u E X is Pareto efficient if there is no matching v c X such that 
v(a)Ra ,u(a) for all a EA and v(a)Pa ,u(a) for some a (=A. Let ' be the set of Pareto 
efficient matchings. 

A (housing) lotte;y m is a probability distribution over matchings, m= 
(MI1, 2, ..., I,l), with rk mk = 1 and mk ? 0 for all k. We denote the lottery that 
assigns probability 1 to matching ,u by m '. Let A./' be the set of all lotteries. 

REMARK 1: In this paper we do not impose any structure on the preferences over the 
set of lotteries. What we gain by this generality is that our results are valid under any 
such structure. What we lose is that we cannot study ex-ante Pareto efficiency of the 
mechanisms that we introduce in Section 2.3. However an impossibility result due to 
Zhou (1990) makes the limitations of imposing this requirement very clear. We elaborate 
on this point in Section 2.3. 

2.2. Housing Markets 

Next we define a class of problems, namely housing mar-kets (Shapley and Scarf (1974)), 
which differ from house allocation problems in only one respect. There is a group of *i 
agents, each of whom owns one house and has preferences over the set of houses. An 
allocation is a permutation of the houses among the agents. Formally, a housing market is 
a four-tuple (A, H, P, It). The first component A = {a,, a2, ..., a,,} is a finite set of 
agents. The second component H = {h1, h,, .. ., h,,} is a finite set of houses. The third 
component P = (Pal, Pa, . .., PaI) is a list of preference relations, where the preference 
relation P, of each agent a is a strict preference on the set of houses H. Finally pu is a 
matching, which is interpreted as an (initial) endowment. Thus, the only difference 
between the class of house allocation problems and the class of housing markets is that in 
the former agents collectively own a set of houses, whereas in the latter each agent owns 
a particular house. In this model too, we extend preferences to the set of matchings in a 
natural way. We also consider the case where A, H, P are fixed. Hence, it suffices to 
specify an endowment matching to define a housing market. 

The following concept is central to this paper: 
A matching -q is in the core (defined by weak domination) of the housing market ,u if 

there is no coalition T cA and matching v such that: 
(i) v(a) c {h eH: h = ,u(a') for some a' E T} for all a c T, 

(ii) P(a)Rn(a) for all a E T, 
(iii) v(a)Pa-q(a) for some a c T. 
Roth and Postlewaite (1977) show that there is a unique matching in the core of each 

housing market. We denote the unique matching in the core of the housing market ,u by 
F( p). There is a well-known algorithm, namely Gale's top trading cycles algorithm, to 
determine this matching. This algorithm is essential to this paper and we analyze it in 
Section 3. 

2.3. Matching and Lottery Mechanisms 

A matching mechanism is a systematic procedure to select a matching for each house 
allocation problem. Similarly a lottery mechanism is a systematic procedure to select a 
lottery for each house allocation problem. Next we introduce two classes of matching 
mechanisms and two lottery mechanisms. We need more notation for that. 
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Let f: {1,2,..., n} --A be a bijection and 5 be the class of all such bijections. Note 
that 191 = n!. We refer to each of these bijections as an ordering of the agents. That is, 
for any f ,Y agent f(1) is first, agent f(2) is second, and so on. 

Given any ordering f e 9 of the agents, define the simple serial dictatorship induced by 
f, cpfas 

pf(f(i)) = Xf(l)(H), 

,f(f(2)) = Xf(2)(H\ {pf(f(1))}), 

qD f( i))= 
ft ( H \ 'u { 5 (f 

MPi))}) 

,pf(f(n)) XJH\ U {J(fQ))} 

That is, the agent who is first gets his top choice, the agent who is second gets his top 
choice among those remaining, and so on. We have n! simple serial dictatorships, each of 
which is induced by a different ordering of the agents. Of course some of these 
mechanisms may select the same matching. Let 97` denote the set of orderings for which 
the induced simple serial dictatorship selects -q e A. Formally, 77 = {f e9. (pf = -0} 

Any simple serial dictatorship ;Pf does not treat agents symmetrically. Agent f(1) 
always gets his top choice whereas agent f(n) gets whatever is remaining after everyone 
else has chosen. For that reason, simple serial dictatorships are not considered very 
desirable. On the other hand, the following lottery mechanism and its variants are 
commonly used in real life applications.S 

Define the random serial dictatorship, 4 rsd, as 

i-rsd 1-lfl. 

fE9 
Fn! 

That is, each simple serial dictatorship is selected with equal probability, or equivalently 
an ordering is randomly chosen with uniform distribution and the induced simple serial 
dictatorship is used. 

Next we define another class of matching mechanisms. Given any matching ,tt 

define the core from assigned endowments pt, 5 'y as ~o = F( ,u). That is, S 'y selects the 
unique matching in the core for the housing market defined by the endowment matching 
,u We have n! different matchings and hence n! such matching mechanisms. Note that 
different endowment matchings might lead to the same matching rq in the core. Let X71/ 
be the set of endowment matchings for which -q is the resulting matching in the core. 
Formally, 7 = { it r, X: S? A = }. 

Obviously these mechanisms, which are central to housing markets, are somewhat 
artificial when they are used for house allocation problems. We do not try to justify them. 
We instead use them to define the following lottery mechanism. The core from random 

5Some examples include graduate housing at Stanford University, University of Michigan, 
University of Rochester, undergraduate housing at Carnegie Mellon University, University of 
Michigan, and allocation of clinical positions at Northwestern College of Chiropractic in Minnesota. 
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endowments, , cre is defined as 

1 / 
q,cre E m g 

That is, each ;l'1 is chosen with equal probability, or equivalently endowments are 
randomly chosen with uniform distribution and the core of the associated housing market 
is selected. The only difference between the housing markets and the house allocation 
problems is that in the former each agent owns a particular house whereas in the latter 
the grand coalition owns all the houses. We interpret this as each agent having a right to 
a uniform distribution over the set of houses and consider the core from random 
enidowments to be a counterpart to the core in the context of house allocation problems. 

The core from random endowments has many appealing properties. It is ex-post Pareto 
efficient, anonymous, and strategy-proof.6 Although we do not impose any structure on 
preferences over lotteries, we know that this mechanism cannot be ex-ante Pareto efficient 
since Zhou (1990) shows that there is no lottery mechanism that is ex-ante Pareto efficient, 
anonymous, and strategy-proof.7 

3. GALE'S TOP TRADING CYCLES ALGORITHM 

Gale's top trading cycles algorithm can be used to find the unique matching in the core 
of a housing market. It can be described as follows: 

Step 1: At step 1, each agent points to the agent who owns his most preferred house. 
Since the number of agents is finite, there is at least one cycle (a cycle is an ordered list 
of agents {a'1, a'2...., a',,} where a'1 points to a' , a' points to a ..., a',, points to a'). In 
each cycle the corresponding trades are performed and all agents belonging to a cycle are 
removed together with their assignments. (Note that all of them are assigned their most 
preferred houses.) If there are remaining agents we go to the next step. 

Step t: At step t, each remaining agent points to the agent who owns his most 
preferred house among those remaining in the market. In each cycle the corresponding 
trades are performed and all agents belonging to a cycle are removed together with their 
assignments. If there are remaining agents we go to the next step. 

By the finiteness of n, at least one cycle forms at each step so that this algorithm 
terminates in at most n steps. As we have mentioned, the algorithm is central to this 
paper and here we further analyze it. We need more notation for that. 

Let pt ELX. We partition the set of agents according to the step in which they belong 
to a cycle and trade. Let A( p0 = {A1( p0, A2( . Ak,( pu)} be this partition, to which 
we refer as the cycle structure for pt. 

6Here strategy-proofness holds regardless of whether the agents report their preferences before or 
after the lottery stage of the mechanism. See Roth (1982). 

7On the other hand, if one gives up strategy-proofness, then there are lottery mechanisms that 
satisfy the other two properties. See Hylland and Zeckhauser (1979) and Zhou (1990) for examples 
of such mechanisms. 
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Let H? = 0 and for all t E {1, 2,..., k,} let 

Ht( p) = {h E H: /l(a) = h for some a E At}. 

That is, Ht( P is the set of houses that are owned by agents in At( P under the 
endowment matching p-. 

Let -q = W( p0. Then by Gale's top trading cycles algorithm we have 

Vt c {1,2,...,~k,,}, Va c-A'( /j), Xa H\ U Hs(/) 77= q(a). 

Consider any agent in At( p0 at Step (t - 1). This agent will take part in a cycle only in 
the next step. Therefore his favorite house among those left at step (t - 1) is either in 
Ht- ( P or in Ht( ). Note that there should be at least one agent in At( O whose 
favorite house among those left at step (t - 1) is in Ht- 1( A'); otherwise agents in At( p) 
would form one or several cycles and trade at step (t - 1). Therefore we have 

Va eA1( /L), X,(H) E H1( /L), 

Va c At Xa (H\ U Hs( p0 ) ) Ht 1( p U H't( ,u) (t = 2, ... ., kH 

Based on this observation, for all t E {2,..., k,} we partition the set At( pu) into the sets 
of satisfied agents St( p0 and unsatisfied agents Ut( p) where 

Note that we have 

At step (t-1) agents in St( u point to an agent in At( ) whereas agents in Ut( E point 
to an agent in At- 1( ju) The agents in the latter group only in the next step point to an 
agent in At( ) and this allows agents in At( ) to form one or several cycles. At step 
(t -U1) agents in At( ( form one or several chains each of which are headed by an agent 
in Ut( ju who is possibly followed by agents in St( ju) Formally the chain structure of 
At( se is a partition {CS( 0 Cp( in .t. ., C,t( i t)} where each chain C( t = {ap( in 
ai2( p),..., aitj( pu)} is such that 

atil ju) tf u 

iatj(p0c) ESt( pu for all j E{2,-.. . ,ni}, 

V { TT I | ITt .. ._IT- 2{....... 
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We refer to agent a1j( u) as the head and agent a',(u as the tail of the chain C,(/). 
Let Tt( /u) denote the set of tails in At( /c). That is, Tt( it) = U>, {aa,( j /)}. Note that at 
step t (the agents in At- 1( ,) have already left together with the set of houses Ht- ( ,) 
and only then), each agent in Ut( ,/) points to one of these tails (and each of them points 
to a different one), which in turn converts these chains into one or several cycles. Note 
that, unsatisfied agents pointing to the tail of a chain does not in general create a cycle; it 
only does here because these agents are leaving the market at step t. 

4. RESULTS 

4.1. Simple Serial Dictatorships and Cores from Assigned Endowments 

Our first result establishes a strong link between the simple serial dictatorships and the 
cores from assigned endowments. It shows that members of both classes select Pareto 
efficient matchings with the same "frequency," in the sense that for each Pareto efficient 
matching the numbers of mechanisms from each class that select it are the same. 

THEOREM 1: For any house allocation problem, the number of simple serial dictatorships 
selecting a Pareto efficient matching -q is the same as the number of cores fiom assigned 
endowments selecting rq. That is, for all q E , we have ( q rI = .7 .1 

The proof of this result involves constructing a mapping f: .Xi n - Y and showing 
that this mapping is one-to-one and onto. Construction of this mapping heavily relies on 
the tools that we introduced in Section 3 concerning Gale's top trading cycles algorithm: 
Given the cycle structure A( jut) of JL, the mapping ff /) orders agents in A'( /t) before 
agents in A2( ,), agents in A2( /i) before agents in A3( /t), and so on. Agents in A1( ,-L) 
are ordered based on the index of their endowments. Chains in At( ,t), t > 1, are ordered 
based on the index of the endowments of the tails, and agents within each chain are 
ordered based on their order in the chain, starting with the head. It turns out that any 
two matchings that lead to the same ordering under this mapping should have the same 
cycle structure, which in turn implies the equivalence of these two matchings. 

What about matchings that are not Pareto efficient? Can they be selected by members 
of either classes? As the following lemma states, the answer is negative. Simple serial 
dictatorships and cores from assigned endowments always select Pareto efficient match- 
ings and conversely, for each Pareto efficient matching there is at least one mechanism 
from each class that selects it. We need the following additional notation to present this 
result. Define 

r={ : (f= 7 forsome f }, 

= {rj &E=6: 9p= 1 for some j/t 

LEMMA 1: '"=S = X. 

REMARK 2: Satterthwaite and Sonnenschein (1981) extend the class of simple serial 
dictatorships by allowing the orderings to be preference dependent. They refer to 
members of this class as serial dictatorships. An immediate corollary of Lemma 1 is that a 
matching mechanism is Pareto efficient if and only if it is a serial dictatorship. Moreover 
a matching mechanism is Pareto efficient if and only if it is the core, where the 
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endowment matching is obtained via an arbitrary matching mechanism. Therefore, we 
obtain a dual characterization of Pareto efficient matching mechanisms. 

4.2. Random Serial Dictatorship and the Core from Random Endowments 

Now we are ready to establish a strong relation between the two lottery mechanisms 
we study. 

THEOREM 2: The random serial dictatorship is precisely the same lottery mechanism as the 
core fronm random endowments. That is, qfrrsd. qcre. 

PROOF: We have n! simple serial dictatorships and n! cores from assigned endowments. 
By Lemma 1 the members of both classes select Pareto efficient matchings and by 
Theorem 1 the number of simple serial dictatorships selecting a particular Pareto efficient 
matching qj is the same as the number of cores from assigned endowments selecting rj. 
Therefore randomn serial dictatorship which randomly selects a simple serial dictatorship 
with uniform distribution leads to the same lottery as the core from random endowments 
which randomly selects a core from assigned endowment with uniform distribution. 

Q.E.D. 

As we have already mentioned, the random serial dictatorship is widely used in real life 
applications of house allocation problems, mostly due to its computational ease.8 We 
believe this result provides more justification to its use. 
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APPENDIX 

PROOF OF LEMMA 1: We will prove the lemma via three claims. 

CLAIM 1: (p S/ C (PS. 

8In many real life applications there are several types of housing and agents rank types of houses 
rather than houses themselves. We can fit such applications to our model by assuming that agents 
are indifferent between houses of the same type (or two rooms in the same dormitory) and they have 
strict preferences over types of houses. The random serial dictatorship naturally extends to this more 
general model. Extending the core from random endowments is not trivial since the core of a housing 
market may be empty for this case. One natural extension is as follows: Order the houses of the 
same type in an exogenous way; break the indifference in the preferences based on this ordering; 
randomly choose the endowments using the uniform distribution; and select the core of the induced 
housing market (with constructed strict preferences). Our equivalence result extends to this more 
general model in a direct way. 
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PROOF OF CLAIM 1: Let -1 E SD . Then there exists ,u E /// with cp/ = . Let A(y) = {A1(A), 
A2( A',...,,Ak( p)} be the cycle structure of ,u. By Gale's top trading cycles algorithm we have 

Vte {1,2,..., k,j, Va eAt(A), X,(H\ U HS( t)) =iz(a). 

Let f: (1,2,. nu} --A be the ordering such that 

Vt, -t E- {1, 2, . .., k, Va E-At( ,u), Va- E=A1( ,u), t < t =>f- 1(a)<f-1(c70. 

That is, f orders agents in A1( ,u) before agents in A2( A,); agents in A2( ,u) before agents in A3( ,u) 
and so on. We will show by induction on i that for all i E (1, 2,..., n} we have qpf(f(i)) = rq(0) 

By Gale's top trading cycles algorithm and the construction of f, we have (cf(f(l)) =Xf(j)(H) 
-q(f(1)). Next suppose p-f(f(Q)) = -7(f(j)) for all j E (1, 2,..., i - 11 where 2 < i < n. Let f(i) E At( At). 
We have the following: 

1. Xf(j(H\ U t_o Hs( At)) =q(f(i)) by Gale's top trading cycles algorithm; 
2. U t- Hs( I-) c U [1 r1(f(j)) by the construction of f, and hence H\ U 'I- 71(f(j)) cH\ 

U s o Hs( ,ju); 

3. r1(f(i)) E H\ U $ (f(j)); 

which imply Xf(i)(H\ U -q 17(f(]))) = -)(f(i)) and therefore 

Pf (f () i ,) H\ U cpff(fij) =X,f(i) (H \ ,J = =) 

Hence by induction we have cpf = -q, completing the proof of Claim 1. 

CLAIM 2: Dcc. 

PROOF OF CLAIM 2: Let -j E cpS Then there exists f E- 9 such that cp1f = -. Let v Ec- ,4 be such 
that v(a)Ra-q(a) for all a EA. We will show that for all i E (1,2,...,n} we have v(i) = 71(i), by 
induction on i which in turn will prove that -j cannot be Pareto dominated. 

Consider agent f(l). We have (pf(f(l))= -q(f(1)) =Xf()(H) and therefore -q(f(1))Rf(j)v(f(l)). 
This, together with the relation v(f(l))Rf(j)-q(f(1)) and preferences being strict, imply that v(f(1)) 

= n(f(1)). 
Next suppose v(f(j)) = -q(,f(j)) for all j E (1, 2,..., i - 1} where 2 < i < n. We want to show that 

v(f(i)) =-(f(i)). We have 

cpf(f(i)) = 71(f(i)) = Xf(i) (H \ U ) 

=Xf(l)(H\ uY -q(fs))) Xf(l)(H'\ lU v(f (s))) 

as well as v(f(i)) E H\ U PI2i v(f(s)) and therefore -7(f(i))Rf(-)v(f(i)). This, together with the 
relation v(f(i))Rf(j)-q(f(i)) and preferences being strict imply that v(f(i))= -q(f(i)). Hence by 
induction we have v = -j showing -j c F. This completes the proof of Claim 2. 

CLAIM 3: c C SD . 

PROOF OF CLAIM 3: Let j EC 9. Consider the matching mechanism SD7. We have (pn(a)Rarq(a) for 
all a EcA since p"I = G(7). Therefore the relation j Ec X together with the preferences being strict 
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imply p`7 which in turn implies -q e p` , completing the proof of Claim 3. Claims 1-3 complete 
the proof of the lemma. Q.E.D. 

PROOF OF THEOREM 1: Let -j E F. We will prove the theorem by constructing a mapping from 
X7 into ." and showing that it is one-to-one and onto. 

For any /t e-, the ordering ff y) is obtained as follows: 

1. Find the cycle structure A( 1) = {A1( ,u), A2( ,u),..., A',I ,)} for /u. 
2. For all t E (2,..., k,jI partition At( /t) into its chains. 
3. Order the agents in A( ,u) based on the index of their endowments, starting with the agent 

whose house has the smallest index. (Recall that the endowment of agent a EA1( y) is 1iA(a).) 
4. Order the agents in At( ,u) (t = 2,..., k,,) as follows: 

(a) Order the agents in the same chain subsequently based on their order in the chain, starting 
with the head. 

(b) Order the chains based on the index of the endowments of the tails of the chains (starting 
with the chain whose tail has the house with the smallest index). 

5. Order the agents in At( ,) before the agents in At+ 1( /t) (t = 1, 2,..., kil -1). That is, agents 
in A1( bt) are ordered before agents in A2( b_t); agents in A2( ,u) are ordered before agents in A3( _t) 
and so on. 

This construction uniquely determines an ordering. We want to show that f is a one-to-one and 
onto mapping from /71 into .7. We will establish this in three steps. 

STEP 1: The range of the mappingf is contained in 9`. That is, cpftl = x for all /t EA'`. 

PROOF OF STEP 1: Let , E/ 7. We have (p= -q. Therefore, by Gale's top trading cycles 
algorithm 

VtE{1,2,...,kill, VaeAt(u), Xa(H\ U Hs(,b()) a). 

Moreover by construction f( ,) orders agents in A'( u) before the agents in A2( bt), agents in 
A2( ,u) before the agents in A3( ,u), and so on. Hence the simple serial dictatorship associated with 
ff /j), namely (pf( , assigns each agent a eA the house i1(a). This completes the proof of Step 1. 
(See the proof of Claim 1 in Lemma 1 for a rigorous proof of this last statement.) 

STEP 2: ff A) is a one-to-one mapping. That is, 

VA, Ty Ce"'7, f( f( A) =f M) U= Au. 

PROOF OF STEP 2: We will prove Step 2 via two claims. 

CLAIM 1: VA, ,U E A/F7, ff M) =ff M) A( M) =A( M). 
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PROOF OF CLAIM 1: Let ,u, ,u E 71. Without loss of generality assume f( 7) =f( L) =f orders 
the agents as a1, a2,.. ., a,,. Let 

A( ,u) = ( {al, * * *, a,,l , ,+, 1, a,,,2 , 

A' A2 

la-v{a) + a,tl l{a,ak+1.al 

At Ak 

A(-)=~ A 
A( u)= ({a, .. , a7t1} {a,7 +l ... {a,7z 1.v al 

lA,,, aT- I A a - 2 

A' A1' 

We want to show that k = k and At = At for all t E (1, 2,..., kl. We proceed by induction. 
Suppose A1 #A1. Without loss of generality suppose that m1 < m1. Then we have a,-,-+ EA1. 

Moreover as agent aT,-,+ 1 is ordered first in A 2, she is also ordered first among the agents in her 
chain and hence by the construction of f( 7) we must have a E U 2().Therefore X ,(H) E 

Hl(u). In addition the relations a,t +1 eAC 2 and ,uE X71 imply + (a, 1) EH2(H ) and hence 
Xt_+ (H) # -(aT,z+ 1). But we also have aT,- + EAl and . -,/, contradicting this relation. 
Therefore A1 A1 

Next suppose A'= A' for all r E {1,2,..., t - 11 where 2 < t < min{k,k}. We have Z-nt_ I = mt_ I 
by the induction hypothesis. We want to show that this implies A t =At. Suppose that is not the case. 
Without loss of generality suppose that Tm-t <int. Then we have a,-,-+1 EAt. Moreover as agent 

a,1,,+ I is ordered first among those in A t+ 1, he is also ordered first among those agents in his chain 
and hence by the construction of f( ) we must have a,-,,1 E Ut1(I). Therefore X,_ +( 

U tS-1 Hs(72)) EHt(72). In addition the relations a eAt+1 and -E-,u ' imply iq(aT,-,+ )E 
Ht+1(7) and hence X, (H\ U t Hs(-)) # i7(a)7+ 1). However the induction hypothesis to- 
gether with / 7, 

- 
E4- ensures that Hs( l) =Hs( Al) for all s E (1,2,..., t -1 and therefore 

Xam ,(H\ U s Hs( I ) I(az + 1), contradicting a + 1 EAt. Therefore At =At. This also proves 

that k = k and hence A( -) =A( Iu) by induction, completing the proof of Claim 1. 

CLAIM 2: Suppose /, 
- 

E "I is such that A( 72) = A( /u). Then 

f(( )f) = f = w 

PROOF OF CLAIM 2: Let c -77/f" be such that A(-)= A( ) = (A, A2...,Al. Suppose 
f(7L) =f( ) =f. Then we have Ht(f) = Ht( ) for all t E (1, 2,. . ., kl. We will show 

Vt E (1,2,...,kl, Va eAt, -(a) = y(a) 

by induction on t. 

Consider agents in A1. We have Hl(7) = H'( ). By construction f orders agents in A'(1u) 
based on the index of their endowments. Therefore the relation ff T) =ff /) implies that -(a) = L(a) 
for all a EA1. 

Next suppose 

Vr E {1,2,..., t-1l, Va EA", -(a) = p(a). 

We want to show that -(a) = p(a) for all a E At. We have H'( -) H'( /) for all - E (1. t - 1i. 
Therefore 

Ut(-) = (a eAt: X,(H\ U t - 2 Hs(-ia)) E Ht- 1(-L) 

= (a eAt: X,(H\ U t - 2 Hs( 1,)) E Ht- 1( -)l = Ut( /), 
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and also 

St( M) =At\Ut( M) =At\Ut( M) = SU ( M 

These relations together with the relation f( f) = ff y) and the construction of f (item 4) imply that 
we have the same chain structure for - and ,u. (Recall that f orders agents in a chain subsequently 
based on their order in the chain, starting with the head of the chain who is the only member of the 
chain that is an element of Ut. Therefore for a given ordering f, the set of agents in Ut uniquely 
determines the chain structure for At.) Let this common chain structure be {Ct, Ct,., Ct1}. Here 
for all i E (1, 2,..., mi, we have Cit = {at,, .a.j. v at } with at 1 E Ut, and ati E St for all E{2..., nil. 
Moreover for all i E I1.In, ml, and all j E I1,-*, i- 1, 

at Xa (H\\ H U HS( )) x/ = (HX\\ 1U Hs(-)) = (atj) 

by the definition of a chain and the induction hypothesis. But since the chain structure is the same 
for matchings ,u and ,u, the set of tails is also the same for both matchings. That is, Tt( -) = Tt( ,u) 
= Tt and therefore the last relation is equivalent to -(a) = p(a) for all a e At \ Tt. Finally by the 
construction of f (item 4) tails of chains are ordered based on their endowments and moreover 

{h E H: -(a) = h for some a E Tt} 

=Ht\{h eH: /i(a) =h for some a eAt\Tt} 

= Ht\ {h E H: /l(a) = h for some a eA'\Tt} 

= {h E H: d(a) = h for some a E Tt}. 

That is, the set of agents Tt cAt collectively own the same set of houses under endowments /t and 
,u and therefore the relation ff -) =f( y) implies i(a) = p(a) for all a E Tt and hence -(a) = t(a) 
for all a e At. Therefore by induction we have /I= ,.t, completing the proof of Claim 2. 

Claim 1 together with Claim 2 prove that f is a one-to-one mapping from 0 1 into 67., 
completing the proof of Step 2. 

STEP 3: ff A) is an onto mapping. 

PROOF OF STEP 3: By Step 1 and Step 2 we have Iw'qI > I "I"I for all X E '; therefore 

L ISI2E LXRX 

and hence by Lemma 1 

L E 
NE '; 

5 

NE f 

But the left-hand side of the inequality is equal to the number of orderings and the right-hand side 
of it is equal to the number of matchings both of which are equal to W!. Hence we should have 
Y?"' = 1Y71 for all 1 c, completing the proofs of both Step 3 as well as the theorem. Q.E.D. 
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